精英家教网 > 高中数学 > 题目详情

如图,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中点。

求证:(1)PA∥平面BDE

(2)平面PAC平面BDE

(3)求二面角E-BD-A的大小。

(1)(2)见解析(3)135°


解析:

证明(1)∵O是AC的中点,E是PC的中点,∴OE∥AP,

又∵OE平面BDE,PA平面BDE,∴PA∥平面BDE

(2)∵PO底面ABCD,∴POBD,

又∵ACBD,且ACPO=O∴BD平面PAC,

而BD平面BDE,∴平面PAC平面BDE。

(3)由(2)可知BD平面PAC,∴BDOE,BDOC,

     ∠EOC是二面角E-BD-C的平面角

(∠EOA是二面角E-BD-A的平面角)

在RT△POC中,可求得OC=,PC=2

在△EOC中,OC=,CE=1,OE=PA=1

 ∴∠EOC=45°∴∠EOA =135°,即二面角E-BD-A大小为135°

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知两个正方行ABCD和DCEF不在同一平面内,M,N分别为AB,DF的中点.
(1)若平面ABCD⊥平面DCEF,求直线MN与平面DCEF所成角的正值弦;
(2)用反证法证明:直线ME与BN是两条异面直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

(下列两道题任选做一道,若两道都做,则以第一道计分)
(1)正方体ABCD-A1B1C1D1中,M、N是棱BC、CD的中点,则异面直线AD1与MN所成的角为
60°
60°
度;
(2)如图是表示一个正方体表面的一种平面展开图,图中的四条线段AB、CD、EF和GH在原正方体中相互异面的有
3
3
对.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示为某风景区设计建造的一个休闲广场,广场的中间造型的平面图是由两个相同的矩形ABCD和EFGH构成对称的十字形区域,十字形区域面积为2000m2,计划在正方方形MNPQ上建一座“观景花坛”,造价为每平方4100元,在四个相同的矩形上(图中阴影部分)铺石材地坪,价格为每平方110元,再在四个空角(如△DQH等)上铺草坪,价格为每平方80元.设AD长为xm,DQ长为ym.
(I)试找出x与y满足的等量关系式;
(Ⅱ)若该广场的占地面积不超过2800m2,求x的取值范围;
(Ⅲ)求该广场的总造价的最小值及此时AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泉州模拟)如图,在棱长为1的正方体ABCD-A1B1C1D1的对角线AC1上任取一点P,以A为球心,AP为半径作一个球.设AP=x,记该球面与正方体表面的交线的长度和为f(x),则函数f(x)的图象最有可能的是(  )

查看答案和解析>>

科目:高中数学 来源:2013届贵州省高二上学期期末考试数学 题型:选择题

如图,正方休ABCD—A1B1C1D1中,E、F为AA1、AB的中点,则图中与EF是异面直线的直线有(   )条

A.8           B . 9              C .10                     D .11

 

 

 

查看答案和解析>>

同步练习册答案