精英家教网 > 高中数学 > 题目详情
设函数f(x)=x-
ax

(1)判断函数f(x)的奇偶性;
(2)若a=-9,试证明函数f(x)在[3,+∞]是单调递增函数;
(3)若不等式f(x)≥1在x∈(0,2]上恒成立,试求实数a的取值范围.
分析:(1)由(x)=x-
a
x
的定义域{x|x≠0}关于原点对称,f(-x)=-x+
a
x
=-f(x),能够判断函数f(x)的奇偶性.
(2)设3≤x1≤x2,推论出f(x1)-f(x2)<0,由此能够得到函数f(x)在[3,+∞)上是增函数.
(3)由x∈(0,2],知f(x)≥1等价于x2-x+a≥0,由此能求出实数a的取值范围.
解答:解:(1)∵函数f(x)=x-
a
x
的定义域{x|x≠0}关于原点对称,
f(-x)=-x+
a
x
=-f(x),
∴函数f(x)=x-
a
x
是奇函数.
(2)∵a=-9,∴f(x)=x-
9
x

设3≤x1≤x2
f(x1)-f(x2)=x1-x2+
9
x1
-
9
x2
=(x1-x2)•
x1x2-9
x1x2

∵3≤x1≤x2
∴x1-x2<0,x1x2>0,x1x2-9>0,
∴f(x1)-f(x2)<0,
∴函数f(x)在[3,+∞)上是增函数.
(3)∵x∈(0,2],
∴f(x)≥1等价于x2-x+a≥0,
∵y=x2-x-a在x=
1
2
处取得最小值
1
4
-
1
2
-a≥0

∴a≤-
1
4

故实数a的取值范围是(-∞,-
1
4
].
点评:本题考查函数的恒成立问题,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为A,若存在非零实数t,使得对于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),则称f(x)为C上的t低调函数.如果定义域为[0,+∞)的函数f(x)=-|x-m2|+m2,且 f(x)为[0,+∞)上的10低调函数,那么实数m的取值范围是(  )
A、[-5,5]
B、[-
5
5
]
C、[-
10
10
]
D、[-
5
2
5
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数,且f(x+2)=f(x)恒成立;当x∈[0,1]时,f(x)=x3-4x+3.有下列命题:
f(-
3
4
) <f(
15
2
)

②当x∈[-1,0]时f(x)=x3+4x+3;
③f(x)(x≥0)的图象与x轴的交点的横坐标由小到大构成一个无穷等差数列;
④关于x的方程f(x)=|x|在x∈[-3,4]上有7个不同的根.
其中真命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案