9£®ÒÑ֪ijÊÐÒ°Éú¶¯ÎïÔ°ÖÐÓÐÃÍ»¢³öû£¬ÈýλÇàÄêΪ³­½ü··µ»ØÊÐÇø£¨´ÓAµã³ö·¢£¬ÑØyÖḺ·½Ïò×ßÖ±Ïߣ©£¬¾ö¶¨Ã°ÏÕ´©Ô½Ò°Éú¶¯ÎïÔ°£¬Èçͼ£¬ÉèÀÏ»¢³öûµÄÇøÓòΪԲC£º£¨x-2£©2+£¨y-4£©2=$\frac{25}{4}$Ëùº¬ÇøÓò£¬ÈýλÇàÄê´ÓA£¨0£¬6£©µ½OÐèÒª40min£¬ÈôÈýλÇàÄêÔÚÀÏ»¢³öûµÄµØÇø¶ºÁôʱ¼ä³¬¹ý15min¾ÍÓÐÉúÃüΣÏÕ£®ÎÊ£ºÈýλÇàÄêÊÇ·ñÓÐÉúÃüΣÏÕ£¿£¨¼ÙÉèÈýλÇàÄêÒÔÔÈËÙ·µ»ØÊÐÇø£©

·ÖÎö ÓÉÌâÒ⣬ÈýλÇàÄê1min×ß¹ýµÄ·³ÌΪ$\frac{3}{20}$£¬15min×ß¹ýµÄ·³ÌΪ$\frac{9}{4}$£¬Çó³öÔ²±»yÖá½ØµÃµÄÏÒ³¤Îª3£¬¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£ºÓÉÌâÒ⣬ÈýλÇàÄê1min×ß¹ýµÄ·³ÌΪ$\frac{3}{20}$£¬15min×ß¹ýµÄ·³ÌΪ$\frac{9}{4}$£®
Ô²C£º£¨x-2£©2+£¨y-4£©2=$\frac{25}{4}$£¬Áîx=0£¬¿ÉµÃy=4¡À$\frac{3}{2}$£¬
¡àÔ²±»yÖá½ØµÃµÄÏÒ³¤Îª3£¾$\frac{9}{4}$£¬
¡àÈýλÇàÄêÓÐÉúÃüΣÏÕ£®

µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÔ²µÄλÖùØϵ£¬¿¼²éѧÉúÀûÓÃÊýѧ֪ʶ½â¾öʵ¼ÊÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®´Ó1£¬2£¬3£¬5ËĸöÊýÖÐËæ»úµØÑ¡È¡Èý¸ö²»Í¬µÄÊý£¬ÔòËùÈ¡Èý¸öÊýÄܹ¹³ÉµÈ²îÊýÁеĸÅÂÊÊÇ$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªOΪ×ø±êÔ­µã£¬µãA£¨-1£¬2£©£¬ÈôµãM£¨x£¬y£©ÎªÆ½ÃæÇøÓò$\left\{\begin{array}{l}{x+y¡Ý2}\\{x¡Ü1}\\{y¡Ü2}\end{array}\right.$ÉϵÄÒ»¸ö¶¯µã£¬Ôò$\overrightarrow{OA}$•$\overrightarrow{OM}$µÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[-1£¬0]B£®[0£¬1]C£®[1£¬3]D£®[1£¬4]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖªÔ²x2+y2+2x+4y-4=0£¬ÈôÔ²ÉÏÇ¡ÓÐ3¸öµãµ½Ö±Ïßy=-x+bµÄ¾àÀëΪ1£¬ÔòbµÄֵΪ£¨¡¡¡¡£©
A£®$3-2\sqrt{2}$B£®$-3+2\sqrt{2}$C£®$-3¡À2\sqrt{2}$D£®$3¡À2\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÈôÅ×ÎïÏßy2=2px£¨p£¾0£©µÄ½¹µãΪF£¬Æä×¼Ïß¾­¹ýË«ÇúÏß$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1£¨a£¾0£¬b£¾0£©$µÄ×󽹵㣬µãMΪÕâÁ½ÌõÇúÏßµÄÒ»¸ö½»µã£¬ÇÒ|MF|=p£¬ÔòË«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\frac{{2+\sqrt{2}}}{2}$B£®$2+\sqrt{2}$C£®$1+\sqrt{2}$D£®$\frac{{1+\sqrt{2}}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖªÊýÁÐ{an}£¬${a_n}¡Ê{N^*}$£¬${S_n}=\frac{1}{8}{£¨{a_n}+2£©^2}$£¬Çóan=4n-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÔÚ³¤Îª10cmµÄÏ߶ÎABÉÏÈÎÈ¡Ò»µãC£®ÏÖ×÷Ò»¾ØÐΣ¬Áڱ߳¤·Ö±ðµÈÓÚÏ߶ÎAC£¬CBµÄ³¤£¬Ôò¸Ã¾ØÐÎÃæ»ý²»Ð¡ÓÚ9cm2µÄ¸ÅÂÊΪ$\frac{4}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬xÖá·Ç¸º°ëÖáƽ·Ö¡ÏAOB£¬¡ÏAOx=¦Á£¬¶¯Ô²P½ØOAËùµÃÏÒMN=2a£¬½ØOBËùµÃÏÒSQ=2b£¬ÊÔÇó¶¯Ô²Ô²ÐÄPµÄ¹ì¼£·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªÍÖÔ²C1£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬ÇÒ¹ý¶¨µãM£¨1£¬$\frac{\sqrt{2}}{2}$£©
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÒÑÖªÖ±Ïßl£ºy=kx-$\frac{1}{3}$£¨k¡ÊR£©ÓëÍÖÔ²C½»ÓÚA¡¢BÁ½µã£¬ÊÔÎÊÔÚyÖáÉÏÊÇ·ñ´æÔÚ¶¨µãP£¬Ê¹µÃÒÔÏÒABΪֱ¾¶µÄÔ²ºã¹ýPµã£¿Èô´æÔÚ£¬Çó³öPµãµÄ×ø±ê£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸