精英家教网 > 高中数学 > 题目详情
14.若等比数列{an}的各项均为正数,且a8a13+a9a12=26,则log2a1+log2a2+…+log2a20=(  )
A.120B.100C.50D.60

分析 由等比数列性质得a1a20=$\frac{1}{2}$(a8a13+a9a12)=25,由对数运算法则得log2a1+log2a2+…+log2a20=$lo{g}_{2}({a}_{1}{a}_{20})^{10}$,由此能求出结果.

解答 解:∵等比数列{an}的各项均为正数,且a8a13+a9a12=26
∴a1a20=$\frac{1}{2}$(a8a13+a9a12)=25
∴log2a1+log2a2+…+log2a20
=log2(a1×a2×…×a20
=$lo{g}_{2}({a}_{1}{a}_{20})^{10}$
=10$lo{g}_{2}{2}^{5}$
=50.
故选:C.

点评 本题考查对数式求值,是基础题,解题时要认真审题,注意等比数列、对数性质及运用法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知各项均为正数的两个数列{an}和{bn}满足:an+1=$\frac{{a}_{n}+{b}_{n}}{\sqrt{{a}_{n}^{2}+{b}_{n}^{2}}}$,bn+1=1+$\frac{{b}_{n}}{{a}_{n}}$,n∈N*
(1)求证:数列{($\frac{{b}_{n}}{{a}_{n}}$)2}是等差数列;
(2)若a1=b1=1令($\frac{{b}_{n}}{{a}_{n}}$)2=$\frac{1}{{c}_{n}}$,若Sn=C1C2+C2C3+…+CnCn+1,求Sn
(3)在(2)的条件下,设dn=$\frac{3-{S}_{n-1}}{1-\sqrt{11}(1-{S}_{n-1})}$,若dn≤2m-1,对于任意的n∈N+恒成立,求正整数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.观察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,由此可归纳出:若函数f(x)是定义在R上的偶函数,则f′(x)(  )
A.为偶函数B.为奇函数
C.既为奇函数又为偶函数D.为非奇非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.分子为1且分母为正整数的分数称为单位分数.1可以分拆为若干个不同的单位分数之和:
1=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{6}$,
1=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{12}$,
1=$\frac{1}{2}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{20}$,
…,
依此类推可得:1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{m}$+$\frac{1}{n}$+$\frac{1}{30}$+$\frac{1}{42}$+$\frac{1}{56}$+$\frac{1}{72}$+$\frac{1}{90}$+$\frac{1}{110}$+$\frac{1}{132}$+$\frac{1}{156}$,其中,m、n∈N*,则mn=(  )
A.228B.240C.260D.273

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.近年来我国电子商务行业迎来发展的新机遇.2016年618期间,某购物平台的销售业绩高达516亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系.现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.
(Ⅰ)先完成关于商品和服务评价的2×2列联表,再判断能否在犯错误的概率不超过0.001的前提下,认为商品好评与服务好评有关?
(Ⅱ)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为随机变量X:
①求对商品和服务全好评的次数X的分布列;
②求X的数学期望和方差.
附临界值表:
 P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k 2.072 2.706 3.841 5.024 6.635 7.897 10.828
K2的观测值:k=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d)
关于商品和服务评价的2×2列联表:
对服务好评对服务不满意合计
对商品好评a=80b=40120
对商品不满意c=70d=1080
合计15050n=200

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知直三棱柱ABC-A1B1C1的各棱长均为a,点P是侧棱AA1的中点,BC1∩B1C=S
(1)作出平面PBC1与平面ABC的公共直线;(不写做法,保留作图痕迹),并证明:PS∥面ABC;
(2)求四棱锥P-BB1C1C的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在直角坐标系中,已知曲线C:$\left\{\begin{array}{l}{x=1+cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),若以原点为极点,x轴的正半轴为极轴建立极坐标系,则曲线C的极坐标方程为ρ=2cosθ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,点C是圆O直径BE的延长线上一点,AC是圆O的切线,A为切点,∠ACB的平分线CD分别与AB、AE交于D、F.
(1)求证:AD=AF;
(2)若AB=AC,求$\frac{S{\;}_{△ACE}}{{S}_{△BCA}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知x∈(1,+∞),函数f(x)=ex+2ax(a∈R),函数g(x)=|$\frac{e}{x}$-lnx|+lnx,其中e为自然对数的底数
(1)求函数f(x)的单调区间
(2)证明:当a∈(2,+∞)时,f′(x-1)>g(x)+a.

查看答案和解析>>

同步练习册答案