精英家教网 > 高中数学 > 题目详情
如图,三棱锥中,底面的中点,点上,且.

(Ⅰ)求证:平面平面
(Ⅱ)求平面与平面所成的二面角的平面角(锐角)的余弦值.
(Ⅰ)详见解析;(Ⅱ)

试题分析:(Ⅰ)主要利用线线垂直、线面垂直可证面面垂直;(Ⅱ)通过作平行线转化到三角形内解角;当然也可建系利用空间向量来解.
试题解析:(Ⅰ)∵底面,且底面, ∴        1分
,可得                                       2分
又∵ ,∴平面                             
注意到平面, ∴                                 3分
,中点,∴                                4分
平面                                  5分
平面,∴                        6分
(Ⅱ)如图,以为原点、所在直线为轴、轴建立空间直角坐标系.
 8分


    10分
设平面的法向量.
 
解得        12分
取平面的法向量为 则
故平面与平面所成的二面角的平面角(锐角)的余弦值为.    14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知为直角梯形,,平面
(1)求证:平面;
(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图示,在底面为直角梯形的四棱椎P   ABCD中,AD//BC,ÐABC= 900, PA^平面ABCD,PA= 4,AD= 2,AB=2,BC = 6.

(1)求证:BD^平面PAC ;
(2)求二面角A—PC—D的正切值;
(3)求点D到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面为菱形,其中的中点.

(1) 求证:
(2) 若平面平面,且的中点,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图,在长方体中,,点E为AB的中点.

(Ⅰ)求与平面所成的角;
(Ⅱ)求二面角的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,菱形的边长为4,.将菱形沿对角线折起,得到三棱锥,点是棱的中点,.

(1)求证:平面
(2)求证:平面平面
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列命题中正确的是              (填上你认为所有正确的选项)
①空间中三个平面,若,则
②空间中两个平面,若,直线所成角等于直线所成角, 则
.
③球与棱长为正四面体各面都相切,则该球的表面积为
④三棱锥中,.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图:点在正方体的面对角线上运动,则下列四个命题:
①三棱锥的体积不变;
∥面

④面⊥面.
其中正确的命题的序号是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在等腰梯形中,的中点.将梯形旋转,得到梯形(如图).

(1)求证:平面
(2)求证:平面
(3)求二面角的余弦值.

查看答案和解析>>

同步练习册答案