精英家教网 > 高中数学 > 题目详情

【题目】如图,已知四棱锥S﹣ABCD中,SA⊥平面ABCD,∠ABC=∠BCD=90°,且SA=AB=BC=2CD=2,E是边SB的中点.
(1)求证:CE∥平面SAD;
(2)求二面角D﹣EC﹣B的余弦值大小.

【答案】
(1)证明:取SA中点F,连结EF,FD,

∵E是边SB的中点,

∴EF∥AB,且EF= AB,

又∵∠ABC=∠BCD=90°,

∴AB∥CD,

又∵AB=2CD,且EF=CD,

∴四边形EFDC是平行四边形,

∴FD∥EC,

又FD平面SAD,CE平面SAD,

∴CE∥面SAD


(2)解:在底面内过点A作直线AM∥BC,则AB⊥AM,

又SA⊥平面ABCD,

以AB,AM,AS所在直线分别为x,y,z轴,建立空间直角坐标系,

则A(0,0,0),B(2,0,0),C(2,2,0),D(1,2,0),D(1,2,0),E(1,0,1),

=(0,2,0), =(﹣1,0,1), =(﹣1,0,), =(﹣1,﹣2,1),

设面BCE的一个法向量为 =(x,y,z),

,取x=1,得 =(1,0,1),

同理求得面DEC的一个法向量为 =(0,1,2),

cos< >= =

由图可知二面角D﹣EC﹣B是钝二面角,

∴二面角D﹣EC﹣B的余弦值为﹣


【解析】(1)取SA中点F,连结EF,FD,推导出四边形EFDC是平行四边形,由此能证明CE∥面SAD.(2)在底面内过点A作直线AM∥BC,则AB⊥AM,以AB,AM,AS所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角D﹣EC﹣B的余弦值.
【考点精析】认真审题,首先需要了解直线与平面平行的判定(平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥P﹣ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=2. (Ⅰ)证明:平面PBE⊥平面PAB;
(Ⅱ)求二面角B﹣PE﹣D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCD﹣A1B1C1D1中,点O为线段BD的中点,设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是(
A.[ ,1]
B.[ ,1]
C.[ ]
D.[ ,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种零件按质量标准分为1,2,3,4,5五个等级,现从批该零件中随机抽取20个,对其等级进行统计分析,得到频率分布表如下:

等级

1

2

3

4

5

频率

0.05

m

0.15

0.35

n


(1)在抽取的20个零件中,等级为5的恰有2个,求m,n的值;
(2)在(1)的条件下,从等级为3和5的所有零件中,任意抽取2个,求抽取的2个零件等级不相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)在定义域内存在实数x0 , 使得f(x0+1)=f(x0)+f(1)成立,则称函数f(x)有“飘移点”x0 . (Ⅰ)证明f(x)=x2+ex在区间 上有“飘移点”(e为自然对数的底数);
(Ⅱ)若 在区间(0,+∞)上有“飘移点”,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCD﹣A1B1C1D1中,若AD的中点为M,DD1的中点为N,则异面直线MN与BD所成角的大小是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是圆O的直径,PA垂直圆所在的平面,C是圆上的点.
(I)求证:平面PAC⊥平面PBC;
(II)若AC=1,PA=1,求圆心O到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)在处的切线与轴平行.

(1)讨论上的单调性;

(2)设 ,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校举行“青少年禁毒”知识竞赛网上答题,高二年级共有500名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了100名学生的成绩进行统计.请你解答下列问题:

分组

频数

频率

[60,70)

10

0.1

[70,80)

22

0.22

[80,90)

a

0.38

[90,100]

30

c

合计

100

d


(1)根据下面的频率分布表和频率分布直方图,求出a+d和b+c的值;
(2)若成绩不低于90分的学生就能获奖,问所有参赛学生中获奖的学生约为多少人?

查看答案和解析>>

同步练习册答案