精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=mlnx+(4-2m)x+$\frac{1}{x}$(m∈R).
(1)当m=2时,求函数f(x)的极值;
(2)设t,s∈[1,3],不等式|f(t)-f(s)|<(a+ln3)(2-m)-2ln3对任意的m∈(4,6)恒成立,求实数a的取值范围.

分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可;
(2)问题等价于对任意的m∈(4,6),恒有(a+ln3)(2-m)-2ln3>5-2m-mln3-$\frac{1}{3}$-12+6m成立,即(2-m)a>$\frac{2}{3}$-4(2-m),根据m>2,分离a,从而求出a的范围即可.

解答 解:(1)函数的定义域是(0,+∞),
m=2时,f(x)=2lnx+$\frac{1}{x}$,f′(x)=$\frac{2x-1}{{x}^{2}}$,
令f′(x)>0,解得:x>$\frac{1}{2}$,令f′(x)<0,解得:0<x<$\frac{1}{2}$,
故函数f(x)在(0,$\frac{1}{2}$)递减,在($\frac{1}{2}$,+∞)递增,
故f(x)的极小值是f($\frac{1}{2}$)=2-2ln2,无极大值;
(2)f′(x)=$\frac{(2x-1)[(2-m)x+1]}{{x}^{2}}$,
令f′(x)=0,得x1=$\frac{1}{2}$,x2=-$\frac{1}{2-m}$,
m∈(4,6)时,函数f(x)在[1,3]递减,
∴x∈[1,3]时,f(x)max=f(1)=5-2m,f(x)min=f(3)=mln3+$\frac{1}{3}$+12-6m,
问题等价于:对任意的m∈(4,6),恒有(a+ln3)(2-m)-2ln3>5-2m-mln3-$\frac{1}{3}$-12+6m成立,
即(2-m)a>$\frac{2}{3}$-4(2-m),
∵m>2,则a<$\frac{2}{3(2-m)}$-4,
∴a<( $\frac{2}{3(2-m)}$-4)min
设m∈[4,6),则m=4时,$\frac{2}{3(2-m)}$-4取得最小值-$\frac{13}{3}$,
故a的范围是(-∞,-$\frac{13}{3}$].

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,考查分类讨论思想,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知$a=\int_0^π{sinxdx}$,则二项式${({1-\frac{a}{x}})^6}$的展开式中x-3的系数为-160.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设x∈R,向量$\overrightarrow{a}$=(1,x),$\overrightarrow{b}$=(2,-4),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$•$\overrightarrow{b}$=(  )
A.-6B.$\sqrt{10}$C.$\sqrt{5}$D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=$\left\{\begin{array}{l}{{3}^{x-2}(x<2)}\\{lo{g}_{3}({x}^{2}-1)(x≥2)}\end{array}\right.$,若f(a)=1,则a的值是(  )
A.2B.1C.1或2D.1或-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=2sin2x-1,若将其图象沿x轴向右平移a个单位(a>0),所得图象关于原点对称,则实数a的最小值为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.诚信是立身之本,道德之基,某校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“$\frac{周实际回收水费}{周投入成本}$”表示每周“水站诚信度”,为了便于数据分析,以四周为一周期,如表为该水站连续十二周(共三个周期)的诚信数据统计:
 第一周  第二周第三周  第四周
 第一个周期 95% 98% 92% 88%
 第二个周期 94% 94% 83% 80%
 第三个周期 85%92%  95%96% 
(1)计算表中十二周“水站诚信度”的平均数$\overline{x}$;
(2)分别从表中每个周期的4个数据中随机抽取1个数据,设随机变量X表示取出的3个数据中“水站诚信度”超过91%的数据的个数,求随机变量X的分布列和期望;
(3)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚信为本”的主题教育活动,根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知抛物线y2=2px(p>0)上一点M到焦点F的距离等于3p,则直线MF的斜率为(  )
A.±$\sqrt{5}$B.±1C.+$\frac{5}{2}$D.±$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.过点C(2,-1)且与直线x+y-3=0垂直的直线是(  )
A.x+y-1=0B.x+y+1=0C.x-y-3=0D.x-y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\left\{\begin{array}{l}{2-2x,0≤x<1}\\{lnx,1≤x≤e}\end{array}\right.$.
(1)求f(f($\sqrt{e}$));
(2)若x0满足f(f(x0))=x0,且f(x0)≠x0,则称x0为f(x)的二阶不动点,求函数f(x)的二阶不动点的个数.

查看答案和解析>>

同步练习册答案