精英家教网 > 高中数学 > 题目详情

【题目】已知函数在区间上是单调函数.

1)求实数的所有取值组成的集合

2)试写出在区间上的最大值

3)设,令,若对任意,总有,求的取值范围.

【答案】(1) 2 3

【解析】

1)因为为开口向上的二次函数,故其在对称轴左边单调递减,对称轴右边单调递增. 函数在区间上是单调函数,等价于区间在对称轴的左边或者右边.列出不等式解出即可.

2)讨论上的单调性,分别求出其最大值,再写成分段函数的形式即可.

3)根据题意写出,对任意,总有等价于,则分别讨论 的大小关系,找到其对应的,代入即可解出答案.

解:(1)对称轴.

所以.

(2)①当 ,即时.

函数上单调递增.

所以.

②当,即.

函数上单调递减.

所以.

综上所述:.
3.

由题意得

画出函数的图像:

①当时,单调递减.

所以.

代入,解得,舍.

②当时,单调递减,在上单调递增. .

代入,解得,所以

③当时,单调递减,在上单调递增. .

代入,化简得,解得

所以.

④当时,单调递减,在上单调递增,在上单调递减,在上单调递增.

.

代入,解得,所以

⑤当时,单调递减,在上单调递增,在上单调递减,在上单调递增.

.

代入,解得

综上所述:. .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若的零点为2,求

2)若上单调递减,求的最小值;

3)若对于任意的都有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图的程序框图中,若输入,则输出的值是( )

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/3/21/1907086498037760/1907898837975040/STEM/25d20caaa911497ea3baaf4f7dee45a3.png]

A. 3 B. 7 C. 11 D. 33

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在R上的奇函数,其中为指数函数,且的图象过定点

1)求函数的解析式;

2)若关于x的方程,有解,求实数a的取值范围;

3)若对任意的,不等式恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论的单调性;

(Ⅱ)是否存在实数,使得有三个相异零点?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产(千部)手机,需另投入成本万元,且 ,由市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完.

)求出2020年的利润(万元)关于年产量(千部)的函数关系式,(利润=销售额—成本);

2020年产量为多少(千部)时,企业所获利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是菱形,是矩形,平面平面的中点.

(1)求证:∥平面

(2)在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形是菱形,交BD于点是边长为2的正三角形,分别是的中点.

(1)求证:EF//平面SAD;

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农业合作社生产了一种绿色蔬菜共吨,如果在市场上直接销售,每吨可获利万元;如果进行精加工后销售,每吨可获利万元,但需另外支付一定的加工费,总的加工(万元)与精加工的蔬菜量(吨)有如下关系:设该农业合作社将(吨)蔬菜进行精加工后销售,其余在市场上直接销售,所得总利润(扣除加工费)为(万元).

(1)写出关于的函数表达式;

(2)当精加工蔬菜多少吨时,总利润最大,并求出最大利润.

查看答案和解析>>

同步练习册答案