精英家教网 > 高中数学 > 题目详情
已知点P是双曲线-=1(a>0,b>0)右支上一点,F1,F2分别是双曲线的左、右焦点,I为△PF1F2的内心(内心--角平分线交点且满足到三角形各边距离相等),若 S=S+S成立,则双曲线的离心率为( )
A.
B.
C.4
D.2
【答案】分析:设△PF1F2的内切圆的半径为r.利用I为△PF1F2的内心,S=S+S成立,可得.再利用双曲线的定义|PF1|-|PF2|=2a,即可得出a,c的关系,利用离心率计算公式即可.
解答:解:设△PF1F2的内切圆的半径为r.
∵I为△PF1F2的内心,S=S+S成立,

化为
又|PF1|-|PF2|=2a,∴

故选C.
点评:熟练掌握双曲线的定义域性质、三角形内切圆的性质、三角形的面积计算公式等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知点P是双曲线C:
x2
8
-
y2
4
=1上的动点,F1,F2分别是双曲线C的左、右焦点O为坐标原点,则
|PF1|+|PF2|
|OP|
的取值范围是(  )
A、[0,6]
B、(2,
6
]
C、(
1
2
6
2
]
D、[0,
6
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
右支上一点,F1、F2分别是双曲线的左、右焦点.I为△PF1F2内心,若S△IPF1=S△IPF2+
1
2
S△IF1F2
,则双曲线的离心率为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是双曲线
x2
9
-
y2
3
=1
右支上的任意一点,由P点向双曲线的两条渐近线引垂线,垂足为M和N,则△PMN的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是双曲线
x2
4
-
y2
5
=1
右支上一点,F是该双曲线的右焦点,点M为线段PF的中点,若|OM|=3,则点P到该双曲线右准线的距离为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•宜春模拟)已知点P是双曲线
x2
8
-
y2
4
=1
上的动点,F1,F2分别是其左、右焦点,O为坐标原点,则
|PF1|+|PF2|
|OP|
的取值范围(  )

查看答案和解析>>

同步练习册答案