精英家教网 > 高中数学 > 题目详情

【题目】若函数f(x)sin2axsin ax·cos ax (a>0)的图象与直线yb相切,并且切点的横坐标依次成公差为的等差数列.

(1)ab的值;

(2)x0,且x0yf(x)的零点,试写出函数yf(x)上的单调增区间.

【答案】(1);(2)时,增区间为 时,增区间为.

【解析】试题分析:(1)先利用二倍角公式和配角公式将函数解析式进行化简,再利用直线和曲线相切、等差数列进行求解;(2先通过解三角方程得到值,再利用三角函数的单调性进行求解.

试题解析:(1)f(x)sin2axsin ax·cos axsin 2ax=-sin

yf(x)的图象与直线yb相切,

bf(x)的最大值或最小值,

b=-1b1.

∵切点的横坐标依次成公差为的等差数列,

f(x)的最小正周期为

Ta>0

a2,即f(x)=-sin.

(2)由题意知sin0

4x0kπ (kZ)

x0(kZ)

0≤(kZ),得k1k2,因此x0x0.

x0时,yf(x)的单调递增区间为

x0时,yf(x)的单调递增区间为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在R上的单调函数f(x)满足f(2),且对任意xyR,都有f(xy)f(x)f(y)

(1)求证:f(x)为奇函数;

(2)f(k·3x)f(3x9x2)<0对任意xR恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱柱中,底面是正方形,且

1)求证

2)若动点在棱上,试确定点的位置,使得直线与平面所成角的正弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆 的离心率为,上、下顶点分别为,点在椭圆上,且异于点,直线与直线 分别交于点面积的最大值为.

1)求椭圆的标准方程;

2)求线段的长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,(其中 为自然对数的底数, ……).

(1)令,若对任意的恒成立,求实数的值;

(2)在(1)的条件下,设为整数,且对于任意正整数,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直线lyxb (b>0),抛物线Cy22px(p>0),已知点P(22)在抛物线C上,且抛物线C上的点到直线l的距离的最小值为.

(1)求直线l及抛物线C的方程;

(2)过点Q(2,1)的任一直线(不经过点P)与抛物线C交于AB两点,直线AB与直线l相交于点M,记直线PAPBPM的斜率分别为k1k2k3.问:是否存在实数λ,使得k1k2λk3?若存在,试求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,上顶点为,直线与直线垂直,椭圆经过点

(1)求椭圆的标准方程;

(2)过点作椭圆的两条互相垂直的弦.若弦的中点分别为,证明:直线恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (m,n∈R)在x=1处取得极值2.

(1)求f(x)的解析式;

(2)k为何值时,方程f(x)-k=0只有1个根

(3)设函数g(x)=x2-2ax+a,若对于任意x1∈R,总存在x2∈[-1,0],使得g(x2)≤f(x1),求a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的偶函数.时, .

(1) 求曲线在点处的切线方程;

(2) 若关于的不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案