精英家教网 > 高中数学 > 题目详情
6.直线3x-4y-5=0的倾斜角为(  )
A.$arctan\frac{3}{4}$B.$π-arctan\frac{3}{4}$C.$arctan\frac{4}{3}$D.$π-arctan\frac{4}{3}$

分析 求出直线的斜率,然后求解直线的倾斜角.

解答 解:直线3x-4y-5=0的斜率为:$\frac{3}{4}$,
直线的倾斜角为:θ,则tanθ=$\frac{3}{4}$.
可得θ=$arctan\frac{3}{4}$.
故选:A.

点评 本题考查直线的倾斜角与直线的斜率的关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知抛物线C:y2=2px(p>0)和两条平行线l1,l2,l1过原点O分别交曲线C和C的准线于点P,Q,l2过曲线C的焦点F,交C于点A,B.
(I)若△OPA的面积为p2,求l1的斜率;
(Ⅱ)求证:|FA|•|FB|=|OP|•|OQ|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知A(5,-4),B(-1,4),则|$\overrightarrow{AB}$|=10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,该程序运行后输出的结果是(  )
A.120B.240C.360D.720

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.方程lg(2x+1)+lgx=1的解集为{2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.关于x的实系数一元二次方程x2+px+2=0的两个虚数根为z1、z2,若z1、z2在复平面上对应的点是经过原点的椭圆的两个焦点,则该椭圆的长轴长为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知sinα=$\frac{4}{5}$,α∈($\frac{π}{2}$,π).
(Ⅰ)求sin(α-$\frac{π}{6}$)的值;
(Ⅱ)求tan2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x),g(x)满足关系g(x)=f(x)•f(x+α),其中α是常数.
(1)设f(x)=cosx+sinx,$α=\frac{π}{2}$,求g(x)的解析式;
(2)设计一个函数f(x)及一个α的值,使得$g(x)=2cosx(cosx+\sqrt{3}sinx)$;
(3)当f(x)=|sinx|+cosx,$α=\frac{π}{2}$时,存在x1,x2∈R,对任意x∈R,g(x1)≤g(x)≤g(x2)恒成立,求|x1-x2|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{a}$=(2sinx,sinx-cosx),$\overrightarrow{b}$=(cosx,$\sqrt{3}$(cosx+sinx)),f(x)=$\overrightarrow{a}•\overrightarrow{b}$+1.
(1)当x$∈(\frac{π}{4},\frac{π}{2})$时,求f(x)的值域,并求其对称中心;
(2)若将f(x)向左平移$\frac{π}{4}$个单位得到函数g(x),再将g(x)关于直线y=2对称,求所得函数的单调递增区间.

查看答案和解析>>

同步练习册答案