精英家教网 > 高中数学 > 题目详情

【题目】如图,在底面是菱形的四棱锥中,,点上,且.

1)证明:平面

2)求以为棱,为面的二面角的大小

3)在棱上是否存在一点,使平面?证明你的结论.

【答案】1)证明见解析.(2.(3)存在;证明见解析.

【解析】

1)根据菱形的性质,结合勾股定理的逆定理、线面垂直的判定定理进行证明即可;

2)作,根据平行线的性质可以得到平面.

,连结.即为二面角的平面角,通过正切的定义求解即可;

3)以为原点,所在直线为轴,所在直线为轴,过点且垂直于面的直线为轴,建立空间直角坐标系,可知轴垂直平分,利用空间向量的共线向量的定义,结合线面垂直的判定定理和性质定理进行求解即可.

1)证明:因为底面是菱形,,所以.

中,由,知.同理,.所以平面

2)解:作,由平面,知平面.

,连结.因为平面,所以,而,所以平面,而平面

即为二面角的平面角.

,所以.

从而

3)由(1)知平面,以为原点,所在直线为轴,所在直线为轴,过点且垂直于面的直线为轴,建立空间直角坐标系,可知轴垂直平分.

.

.

为平面的法向量,

则有:.

.

平面,则有

.

解得,此时的中点.

因此在棱上存在一点,使平面.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,其中左焦点(-2,0).

1) 求椭圆C的方程;

2) 若直线y=x+m与椭圆C交于不同的两点AB,且线段AB的中点M在圆x2+y2=1上,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆 的离心率为,上、下顶点分别为,点在椭圆上,且异于点,直线与直线 分别交于点面积的最大值为.

1)求椭圆的标准方程;

2)求线段的长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象如图所示.

1)求函数的解析式及其对称轴方程;

2)求函数在区间上的最大值和最小值,并指出取得最值时的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求单调区间;

(2)设,证明:上有最小值;设上的最小值为,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为矩形,平面平面. 

(1)证明:平面平面

(2)若为棱的中点,,求四面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】市场上有一种新型的强力洗衣液,特点是去污速度快.已知每投放,且)个单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度(克/升)随着时间(分钟)变化的函数关系式近似为,其中.若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和.根据经验,当水中洗衣液的浓度不低于(克/升)时,它才能起到有效去污的作用.

1)当一次投放个单位的洗衣液时,求在分钟时,洗衣液在水中释放的浓度.

2)在(1)的情况下,即一次投放个单位的洗衣液,则有效去污时间可达几分钟?

3)若第一次投放个单位的洗衣液,分钟后再投放个单位的洗衣液,请你写出第二次投放之后洗衣液在水中释放的浓度(克/升)与时间(分钟)的函数关系式,求出最低浓度,并判断接下来的四分钟是否能够持续有效去污.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧棱底面分别为棱的中点.

1)求证:

2)若,求三棱锥的体积;

3)判断直线与平面的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,求

(1)过点A,B且周长最小的圆的方程;

(2)过点A,B且圆心在直线上的圆的方程.

查看答案和解析>>

同步练习册答案