精英家教网 > 高中数学 > 题目详情

【题目】已知圆,动圆与圆外切,且与直线相切,该动圆圆心的轨迹为曲线.

1)求曲线的方程

2)过点的直线与抛物线相交于两点,抛物线在点A的切线与交于点N,求面积的最小值.

【答案】1;(24.

【解析】

1)先设,动圆半径为,根据题意,列出等量关系,化简整理,即可得出曲线方程;

2)设,依题意可知,直线的斜率存在,设直线的方程为:,联立直线与抛物线方程,根据韦达定理,以及弦长公式,表示出,再表示出过点点的切线方程,求出点,根据点到直线距离公式,以及三角形面积公式,得到,即可得出结果.

1)设,动圆半径为,因为动圆与圆外切,

所以

又动圆与直线相切,所以由题意可得:

,即,整理得:

所以抛物线的方程为.

2)设,依题意可知,直线的斜率存在,

故设直线的方程为:

联立消去可得,.

.

所以

.

,得

所以过点的切线方程为

所以切线方程可化为.,可得,

所以点,

所以点到直线的距离

所以,当时,等号成立

所以面积的最小值为4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,矩形中,,将沿对角线向上翻折,若翻折过程中长度在内变化,则点所形成的运动轨迹的长度为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为提高产品质量,某企业质量管理部门经常不定期地对产品进行抽查检测,现对某条生产线上随机抽取的100个产品进行相关数据的对比,并对每个产品进行综合评分(满分100分),将每个产品所得的综合评分制成如图所示的频率分布直方图.记综合评分为80分及以上的产品为一等品.

1)求图中的值,并求综合评分的中位数;

2)用样本估计总体,视频率作为概率,在该条生产线中随机抽取3个产品,求所抽取的产品中一等品数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论的单调性;

2)若是函数的两个不同零点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线C)的焦点为

1)动直线lF点且与抛物线C交于MN两点,点My轴的左侧,过点M作抛物线C准线的垂线,垂足为M1,点E上,且满足连接并延长交y轴于点D的面积为,求抛物线C的方程及D点的纵坐标;

2)点H为抛物线C准线上任一点,过H作抛物线C的两条切线,,切点为AB,证明直线过定点,并求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(Ⅰ)讨论单调性;

(Ⅱ)当时,设函数存在两个零点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆,点是圆内一个定点,点是圆上任意一点,线段的垂直平分线和半径相交于点.当点在圆上运动时,点的轨迹为椭圆.

1分别为椭圆的左右焦点,为椭圆上任意一点,若,求的面积;

2)如图,若椭圆,椭圆,且),则称椭圆是椭圆倍相似椭圆.已知是椭圆倍相似椭圆,若椭圆的任意一条切线交椭圆于两点,试求弦长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为生产一种精密管件研发了一台生产该精密管件的车床,该精密管件有内外两个口径,监管部门规定口径误差的计算方式为:管件内外两个口径实际长分别为,标准长分别为口径误差只要口径误差不超过就认为合格,已知这台车床分昼夜两个独立批次生产.工厂质检部在两个批次生产的产品中分别随机抽取40件作为样本,经检测其中昼批次的40个样本中有4个不合格品,夜批次的40个样本中有10个不合格品.

(Ⅰ)以上述样本的频率作为概率,在昼夜两个批次中分别抽取2件产品,求其中恰有1件不合格产品的概率;

(Ⅱ)若每批次各生产1000件,已知每件产品的成本为5元,每件合格品的利润为10元;若对产品检验,则每件产品的检验费用为2.5元;若有不合格品进入用户手中,则工厂要对用户赔偿,这时生产的每件不合格品工厂要损失25元.以上述样本的频率作为概率,以总利润的期望值为决策依据,分析是否要对每个批次的所有产品作检测?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于之间,将测量结果按如下方式分成6组:第1,第2,…,第6,如图是按上述分组方法得到的频率分布直方图.

1)由频率分布直方图估计该校高三年级男生身高的中位数;

2)在这50名男生身高不低于的人中任意抽取2人,则恰有一人身高在内的概率.

查看答案和解析>>

同步练习册答案