精英家教网 > 高中数学 > 题目详情

【题目】设函数f′(x)是偶函数f(x)(x∈(﹣∞,0)∪(0,+∞)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是(
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣1,0)∪(0,1)
D.(0,1)∪(1,+∞)

【答案】C
【解析】解:令g(x)=
则g′(x)=
∵xf′(x)﹣f(x)<0,
∴g′(x)<0,
∴g(x)在(0,+∞)上为减函数,
又∵g(﹣x)=﹣g(x),
∴函数g(x)为定义域上的奇函数,g(x)在(﹣∞,0)上为减函数.
又∵g(﹣1)=0,
∴g(1)=0,
∴不等式f(x)>0xg(x)>0,
∴x>0,g(x)>0或x<0,g(x)<0,
∴0<x<1或﹣1<x<0,
∴f(x)>0成立的x的取值范围是(﹣1,0)∪(0,1),
故选:C.
由已知当x>0时总有xf′(x)﹣f(x)<0成立,可判断函数g(x)= 在(0,+∞)上为减函数,由已知f(x)是定义在R上的奇函数,可证明g(x)在(﹣∞,0)上为减函数,不等式f(x)>0等价于xg(x)>0,分类讨论即可得到答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在正方体中, 分别是线段的中点.

(1)求异面直线所成角的大小;

(2)求直线与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.请在答卷卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.

A.选修4—1:几何证明选讲

如图,△ABC的顶点AC在圆O上,B在圆外,线段AB与圆O交于点M

(1)若BC是圆O的切线,且AB=8,BC=4,求线段AM的长度;

(2)若线段BC与圆O交于另一点N,且AB=2AC,求证:BN=2MN

B.选修4—2:矩阵与变换

ab∈R.若直线laxy-7=0在矩阵A= 对应的变换作用下,得到的直线为l:9xy-91=0.求实数ab的值.

C.选修4—4:坐标系与参数方程

在平面直角坐标系xOy中,直线l (t为参数),与曲线C (k为参数)交于AB两点,求线段AB的长.

D.选修4—5:不等式选讲

ab,求证:a4+6a2b2b4>4ab(a2b2).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|y=log2(x﹣1)},B={y|y=﹣x2+2x﹣2,x∈R}
(1)求集合A,B;
(2)若集合C={x|2x+a<0},且满足B∪C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax1(x≥0)的图象经过点(2, ),其中a>0,a≠1.
(1)求a的值;
(2)求函数f(x)=a2x﹣ax2+8,x∈[﹣2,1]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:分子为1且分母为正整数的分数叫做单位分数,我们可以把1拆分成多个不同的单位分数之和.例如:1= + + ,1= + + + ,1= + + + + ,…,依此拆分法可得1= + + + + + + + + + + + + + ,其中m,n∈N* , 则m﹣n=(
A.﹣2
B.﹣4
C.﹣6
D.﹣8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知 a>0 且 a≠1,若函数f(x)=loga(x﹣1),g(x)=loga(5﹣x).
(1)求函数h(x)=f(x)﹣g(x)的定义域;
(2)讨论不等式f(x)≥g(x)成立时x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于任意实数x,符号[x]表示不超过x的最大整数,如[2.2]=2,[﹣3.5]=﹣4,设数列{an}的通项公式为an=[log21]+[log22]+[log23]+…[log2(2n﹣1)].
(1)求a1a2a3的值;
(2)是否存在实数a,使得an=(n﹣2)2n+a(n∈N*),并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋子中放有大小和形状相同的四个小球,它们的标号分别为1、2、3、4,现从袋中不放回地随机抽取两个小球,记第一次取出的小球的标号为a,第二次取出的小球的标号为b,记事件A为“a+b≥6“.
(1)列举出所有的基本事件(a,b),并求事件A的概率P(A);
(2)在区间[0,2]内任取两个实数x,y,求事件“x2+y2≥12P(A)“的概率.

查看答案和解析>>

同步练习册答案