精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C1左右焦点为F1F2直线(1xy0与该椭圆有一个公共点在y轴上,另一个公共点的坐标为(m1).

1)求椭圆C的方程;

2)设P为椭圆C上任一点,过焦点F1F2的弦分别为PMPN,设λ1λ2,求λ12的值.

【答案】1;(210

【解析】

(1)由直线过点,可得,又点,在椭圆上,可求得,的值,从而得出椭圆方程;

(2)设出,,,,,,在椭圆上,则有x02+3y02=6,根据,,可求出的坐标,再把,代入,进而可求的值.

(1)∵直线(1)xy0y轴交点为(0,),

,

又∵直线(1)xy0与椭圆有公共点(m,1).

∴点(,1)在椭圆上,

,

a2=6,

∴椭圆C的方程为:;

(2)P(x0,y0),M(x1,y1),N(x2,y2),

则有x02+3y02=6,

根据λ1λ2,

可得M(2,),N(2,),

M,N代入x02+3y02=6,

可得,

λ12=10.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

某高校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作。规定:至少正确完成其中2题的便可提交通过。已知6道备选题中考生甲有4道题能正确完成,2道题不能完成;考生乙每题正确完成的概率都是,且每题正确完成与否互不影响。

)分别写出甲、乙两考生正确完成题数的概率分布列,并计算数学期望;

)试从两位考生正确完成题数的数学期望及至少正确完成2题的概率分析比较两位考生的实验操作能力.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧面底面中点,底面是直角梯形,.

1)求证:平面

2)设为棱上一点,,试确定的值使得二面角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,短轴的一个端点到焦点的距离为.

(1)求椭圆的方程;

(2)是椭圆上的两点,线段的中点在直线上,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)写出直线的直角坐标方程;

(2)设点的坐标为,若点是曲线截直线所得线段的中点,求的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列4个命题:

①若函数上有零点,则一定有

②函数既不是奇函数又不是偶函数;

③若函数的值域为,则实数的取值范围是

④若函数满足条件,则的最小值为.

其中正确命题的序号是:_______.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有限数列同时满足下列两个条件:

对于任意的),

对于任意的),三个数中至少有一个数是数列中的项.[

1)若,且,求的值;

2)证明:不可能是数列中的项;

3)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆,过动点M0m)的直线交x轴于点N,交椭圆CAP(其中P在第一象限,N在椭圆内),且M是线段PN的中点,点P关于x轴的对称点为Q,延长QMC于点B,记直线PMQM的斜率分别为k1k2

1)当时,求k2的值;

2)当时,求直线AB斜率的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,圆O的直径AB=6,C为圆周上一点,BC=3,平面PAC垂直圆O所在平面,直线PC与圆O所在平面所成角为60°,PA⊥PC.

(1)证明:AP⊥平面PBC

(2)求二面角P—AB一C的余弦值

查看答案和解析>>

同步练习册答案