精英家教网 > 高中数学 > 题目详情

【题目】如图,在底面是菱形的四棱锥中, 为线段上一点,且

(Ⅰ)若的中点,证明: 平面

(Ⅱ)求二面角的余弦值.

【答案】(Ⅰ)见解析;(Ⅱ) .

【解析】试题分析:(Ⅰ)可证明,又平面 平面,所以平面

(Ⅱ)分别以直线轴、轴、轴建立空间直角标系,求解即可.

试题解析:(Ⅰ)证明:连接,连接,因为四边形是菱形,所以的中点.

又因为 的中点,所以的中点,所以

又因为平面 平面,所以平面

(Ⅱ)连接,因为,所以,因为,所以,而,所以平面.因为在菱形中, ,所以是等边三角形.

,则 ,在中,由,解得

分别以直线轴、轴、轴建立如图所示的空间直角标系,由题意得 ,由,得

设平面的一个法向量为

,得

取平面的一个法向量为

所以二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“足寒伤心,民寒伤国”,精准扶贫是巩固温饱成果、加快脱贫致富、实现中华民族伟大“中国梦”的重要保障某地政府在对石山区乡镇企业实施精准扶贫的工作中,准备投入资金将当地农产品进行二次加工后进行推广促销,预计该批产品销售量万件(生产量与销售量相等)与推广促销费万元之间的函数关系为(其中推广促销费不能超过3万元).已知加工此批农产品还要投入成本万元(不包含推广促销费用),若加工后的每件成品的销售价格定为/件.

(1)试将该批产品的利润万元表示为推广促销费万元的函数;(利润销售额成本推广促销费)

(2)当推广促销费投入多少万元时,此批产品的利润最大?最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定下列函数:①f(x)= ②f(x)=﹣|x|③f(x)=﹣2x﹣1 ④f(x)=(x﹣1)2 , 满足“对任意x1 , x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2)”的条件是( )
A.①②③
B.②③④
C.①②④
D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)讨论函数的单调性;

(Ⅱ)证明: 时,

(Ⅲ)比较三个数: 的大小(为自然对数的底数),请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于下列命题:
①若函数y=2x的定义域是{x|x≤0},则它的值域是{y|y≤1};
②若函数y= 的定义域是{x|x>2},则它的值域是{y|y≤ };
③若函数y=x2的值域是{y|0≤y≤4},则它的定义域一定是{x|﹣2≤x≤2};
④若函数y=log2x的值域是{y|y≤3},则它的定义域是{x|0<x≤8}.
其中不正确的命题的序号是 . (注:把你认为不正确的命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】计算与求解
(1)计算:2log32﹣log3 +log38﹣5
(2)已知a>0,a≠1,若loga(2x+1)<loga (4x﹣3),求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,求关于的不等式的解集;

(2)若上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=1﹣ (a>0且a≠1)是定义在R上的奇函数.
(1)求a的值;
(2)求f(x)的值域;
(3)若关于x的方程|f(x)(2x+1)|=m有1个实根,求实数m的取值范围;
(4)当x∈(0,1]时,tf(x)≥2x﹣2恒成立,求实数t取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】血药浓度(Plasma Concentration)是指药物吸收后在血浆内的总浓度. 药物在人体内发挥治疗作用时,该药物的血药浓度应介于最低有效浓度和最低中毒浓度之间.已知成人单次服用1单位某药物后,体内血药浓度及相关信息如图所示:

根据图中提供的信息,下列关于成人使用该药物的说法中,不正确的是

A. 首次服用该药物1单位约10分钟后,药物发挥治疗作用

B. 每次服用该药物1单位,两次服药间隔小于2小时,一定会产生药物中毒

C. 每间隔5.5小时服用该药物1单位,可使药物持续发挥治疗作用

D. 首次服用该药物1单位3小时后,再次服用该药物1单位,不会发生药物中毒

查看答案和解析>>

同步练习册答案