精英家教网 > 高中数学 > 题目详情

【题目】已知圆柱底面半径为1,高为是圆柱的一个轴截面,动点从点出发沿着圆柱的侧面到达点,其距离最短时在侧面留下的曲线如图所示.将轴截面绕着轴逆时针旋转后,边与曲线相交于点.

1)求曲线的长度;

2)当时,求点到平面的距离.

【答案】1;(2

【解析】

1)将圆柱的一半展开,可知曲线的长度为矩形的对角线长度.其中矩形的宽为圆柱的高,长为底面的半圆长,即可求得曲线的长度.

2)当,以底面的圆心O为原点建立空间直角坐标系.写出各个点的坐标,求得平面的法向量,即可求得点到平面的距离.

1)曲线的长度为矩形的对角线长度.其中矩形的宽为圆柱的高,长为底面的半圆长,

其中,底面的半圆长为

的长为

2)当,建立如图所示的空间直角坐标系:

则有,

所以.

设平面的法向量为,

,代入可得,

,,

所以点到平面的距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数满足:①定义为;②.

1)求的解析式;

2)若;均有成立,求的取值范围;

3)设,试求方程的解.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,是等腰直角三角形,,点D是侧棱上的一点.

1)证明:当点D的中点时,平面BCD

2)若二面角的余弦值为求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式,为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20.第一组工人用第一种生产方式,第二组工人用第二种生产方式,根据工人完成生产任务的工作时间(单位:min)绘制了如图所示的茎叶图:

1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;

2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表,再根据列联表,能否有99.9%的把握认为两种生产方式的效率有差异?

超过

不超过

第一种生产方式

第二种生产方式

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的方程e为自然对数的底数)有且仅有6个不等的实数解,则实数a的取值范围是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校需从甲、乙两名学生中选一人参加物理竞赛,这两名学生最近5次的物理竞赛模拟成绩如下表:

第一次

第二次

第三次

第四次

第五次

学生甲的成绩(分)

80

85

71

92

87

学生乙的成绩(分)

90

76

75

92

82

1)根据成绩的稳定性,现从甲、乙两名学生中选出一人参加物理竞赛,你认为选谁比较合适?

2)若物理竞赛分为初赛和复赛,在初赛中有如下两种答题方案:方案1:每人从5道备选题中任意抽出1道,若答对,则可参加复赛,否则被淘汰;方案2:每人从5道备选题中任意抽出3道,若至少答对其中2道,则可参加复赛,否则被淘汰.若学生乙只会5道备选题中的3道,则学生乙选择哪种答题方案进入复赛的可能性更大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是一块半径为4米的圆形铁皮,现打算利用这块铁皮做一个圆柱形油桶.具体做法是从中剪裁出两块全等的圆形铁皮做圆柱的底面,剪裁出一个矩形做圆柱的侧面(接缝忽略不计),为圆柱的一条母线,点上,点的一条直径上,分别与直线相切,都与内切.

1)求圆形铁皮半径的取值范围;

2)请确定圆形铁皮半径的值,使得油桶的体积最大.(不取近似值)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面.

1)求证:.

2)若M为线段上的一点,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为:甲子、乙丑、丙寅、…、癸酉,甲戌、乙亥、丙子、…、癸未,甲申、乙酉、丙戌、…、癸巳,…,共得到60个组合,周而复始,循环记录.2010年是“干支纪年法”中的庚寅年,那么2020年是“干支纪年法”中的( )

A.已亥年B.戊戌年C.庚子年D.辛丑年

查看答案和解析>>

同步练习册答案