精英家教网 > 高中数学 > 题目详情

是等差数列{}的前n项和,且,则的值为      .

 

【答案】

44

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(Ⅰ)已知函数f(x)=
x
x+1
.数列{an}满足:an>0,a1=1,且
an+1
=f(
an
)
,记数列{bn}的前n项和为Sn,且Sn=
2
2
[
1
an
+(
2
+1)n]
.求数列{bn}的通项公式;并判断b4+b6是否仍为数列{bn}中的项?若是,请证明;否则,说明理由.
(Ⅱ)设{cn}为首项是c1,公差d≠0的等差数列,求证:“数列{cn}中任意不同两项之和仍为数列{cn}中的项”的充要条件是“存在整数m≥-1,使c1=md”.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•乐山二模)已知数列{an}有a1=a,a2=p(常数p>0),对任意的正整数n,Sn=a1+a2+…+an,并有Sn满足Sn=
n(an-a1)
2

(I)试判断数列{an}是否是等差数列,若是,求其通项公式,若不是,说明理由;
(II)令Pn=
Sn+2
Sn+1
+
Sn+1
Sn+2
Tn是数列{Pn}
的前n项和,求证:Tn-2n<3.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2-9n(n∈N*)
(1)这个数列是等差数列吗?若是请证明并求它的通项公式,若不是,请说明理由;
(2)求使得Sn取最小的序号n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闸北区一模)设{an}和{bn}均为无穷数列.
(1)若{an}和{bn}均为等比数列,试研究:{an+bn}和{anbn}是否是等比数列?请证明你的结论;若是等比数列,请写出其前n项和公式.
(2)请类比(1),针对等差数列提出相应的真命题(不必证明),并写出相应的等差数列的前n项和公式(用首项与公差表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项积为Tn,已知对?n,m∈N+,当n>m时,总有
Tn
Tm
=Tn-mq(n-m)m
(q>0是常数).
(1)求证:数列{an}是等比数列;
(2)设正整数k,m,n(k<m<n)成等差数列,试比较Tn•Tk和(Tm2的大小,并说明理由;
(3)探究:命题p:“对?n,m∈N+,当n>m时,总有
Tn
Tm
=Tn-mq(n-m)m
(q>0是常数)”是命题t:“数列{an}是公比为q(q>0)的等比数列”的充要条件吗?若是,请给出证明;若不是,请说明理由.

查看答案和解析>>

同步练习册答案