直线与圆相交于两点(其中是实数),且是直角三角形(是坐标原点),则点与点之间距离的最大值为 ( )
A. B. C. D.
A
【解析】
试题分析:由圆x2+y2=1,所以圆心(0,0),半径为1,所以|OA|=|OB|=1,则△AOB是等腰直角三角形,得到|AB|=,则圆心(0,0)到直线ax+by=1的距离为d=,∴2a2+b2=2,即a2+
因此所求距离为椭圆a2+上点P(a,b)到焦点(0,1)的距离,如图
得到其最大值PF=+1,故选A
考点:此题考查学生灵活点到直线的距离公式化简求值,综合运用所学的知识求动点形成的轨迹方程,是一道综合题
点评:根据圆的方程找出圆心坐标和半径,由|OA|=|OB|根据题意可知△AOB是等腰直角三角形,根据勾股定理求出|AB|的长度,根据等腰直角三角形的性质可得圆心到直线的距离等于|AB|的一半,然后利用点到直线的距离公式表示出圆心到直线的距离,两者相等即可得到a与b的轨迹方程为一个椭圆,由图形可知点P(a,b)到焦点(0,1)的距离的最大值.
科目:高中数学 来源:2013-2014学年河南省高三年级12月月考理科数学试卷(解析版) 题型:解答题
如图所示,已知以点 为圆心的圆与直线 相切,过点的动直线 与圆 相交于两点,是的中点,直线与相交于点 .
(1)求圆的方程;
(2)当时,求直线的方程;
(3)是否为定值?如果是,求出其定值;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年福建省漳州市七校高三第三次联考理科数学试卷(解析版) 题型:解答题
已知圆的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程为(为参数).若直线与圆相交于,两点,且.
(Ⅰ)求圆的直角坐标方程,并求出圆心坐标和半径;
(Ⅱ)求实数的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com