精英家教网 > 高中数学 > 题目详情
12.已知O为△ABC的外心,|$\overrightarrow{AB}$|=2,|$\overrightarrow{AC}$|=4,若$\overrightarrow{AO}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,且x+4y=2,则|$\overrightarrow{OA}$|=2.

分析 可作出图形,根据条件可求出$\overrightarrow{AO}•\overrightarrow{AB}=2,\overrightarrow{AO}•\overrightarrow{AC}=8$,从而分别在$\overrightarrow{AO}=x\overrightarrow{AB}+y\overrightarrow{AC}$的两边同时乘以$\overrightarrow{AB},\overrightarrow{AC}$便可得到$\left\{\begin{array}{l}{2=4x+y\overrightarrow{AB}•\overrightarrow{AC}}&{①}\\{8=16y+x\overrightarrow{AB}•\overrightarrow{AC}}&{②}\end{array}\right.$,然后根据条件x+4y=2:①+②,和①×4+②便可得到$\left\{\begin{array}{l}{(x+y)\overrightarrow{AB}•\overrightarrow{AC}=2}\\{8(x+y)+\overrightarrow{AB}•\overrightarrow{AC}=8}\end{array}\right.$,这样便可解出x+y=$\frac{1}{2}$,从而联立x+4y=2便可解出x,y,从而便可得出$|\overrightarrow{OA}|$.

解答 解:如图,分别取AB,AC中点D,E,连接OD,OE,AO,O为△ABC的外心;
∴OD⊥AB,OE⊥AC;
∴$由\overrightarrow{AO}=x\overrightarrow{AB}+y\overrightarrow{AC}$得,$\left\{\begin{array}{l}{\overrightarrow{AO}•\overrightarrow{AB}=x{\overrightarrow{AB}}^{2}+y\overrightarrow{AB}•\overrightarrow{AC}}\\{\overrightarrow{AO}•\overrightarrow{AC}=x\overrightarrow{AB}•\overrightarrow{AC}+y{\overrightarrow{AC}}^{2}}\end{array}\right.$;
$\left\{\begin{array}{l}{2=4x+y\overrightarrow{AB}•\overrightarrow{AC}}&{①}\\{8=16y+x\overrightarrow{AB}•\overrightarrow{AC}}&{②}\end{array}\right.$;
∵x+4y=2;
∴①+②得:$(x+y)\overrightarrow{AB}•\overrightarrow{AC}=2$③;
①×4+②得:$8(x+y)+\overrightarrow{AB}•\overrightarrow{AC}=8$④;
∴③④联立得,$x+y=\frac{1}{2}$;
∴解$\left\{\begin{array}{l}{x+4y=2}\\{x+y=\frac{1}{2}}\end{array}\right.$得,$x=0,y=\frac{1}{2}$;
∴$\overrightarrow{AO}=\frac{1}{2}\overrightarrow{AC}$;
∴$|\overrightarrow{AO}|=2$.
故答案为:2.

点评 考查三角形外心的概念,向量数量积的运算及其计算公式,直角三角形边角的关系,以及构造方程组解题的方法,向量数乘的几何意义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.计算:lg$\frac{5}{2}$+2lg2+${2}^{lo{g}_{4}3}$=1+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知x,y满足不等式组$\left\{\begin{array}{l}{x+2y-3≤0}\\{x+3y-3≥0}\\{y≤1}\end{array}\right.$若当且仅当$\left\{\begin{array}{l}{x=3}\\{y=0}\end{array}\right.$时,z=ax+y(a>0)取得最大值,则a的取值范围是(  )
A.(0,$\frac{1}{3}$)B.($\frac{1}{3}$,+∞)C.(0,$\frac{1}{2}$)D.($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设非负实数x,y满足:$\left\{\begin{array}{l}{y≥x-1}\\{2x+y≤5}\end{array}\right.$,(2,1)是目标函数z=ax+3y(a>0)取最大值的最优解,则a的取值范围是(  )
A.(0,6)B.(0,6]C.[6,+∞)D.(6,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.中心在原点,焦点在x轴,直线y=x+1与该双曲线所截得的弦长为|PQ|=4,且以PQ为直径的圆过原点,求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数y=2cos(x-$\frac{π}{3}$)($\frac{6}{π}$≤x≤$\frac{2π}{3}$)的最小值和最大值分别是1,2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=x2-1,g(x)=$\left\{\begin{array}{l}{x-1,x>0}\\{2-x,x<0}\end{array}\right.$
(1)求g(g(x))和g(f(x))的值;
(2)求f(g(x))和g(f(x))的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=$\frac{{-2}^{x}+b}{{2}^{x+1}+a}$是定义域为R的奇函数.
(1)求f(x)的解析式;
(2)求出函数f(x)的增减性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x2+ax-4a.
(1)若函数f(x)在(-∞,+∞)上有两个零点,求实数a的取值范围;
(2)若对任意实数x均有f(x)>0,求实数a的取值范围.

查看答案和解析>>

同步练习册答案