精英家教网 > 高中数学 > 题目详情

【题目】[选修4—4:坐标系与参数方程]

在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

1)求的直角坐标方程;

2)若有且仅有三个公共点,求的方程.

【答案】 (1)

2)综上,所求的方程为

【解析】分析:(1)就根据以及将方程中的相关的量代换,求得直角坐标方程

(2)结合方程的形式,可以断定曲线是圆心为,半径为的圆,是过点且关于轴对称的两条射线通过分析图形的特征,得到什么情况下会出现三个公共点,结合直线与圆的位置关系,得到k所满足的关系式,从而求得结果.

详解:(1)的直角坐标方程为

(2)由(1)知是圆心为,半径为的圆

由题设知,是过点且关于轴对称的两条射线轴右边的射线为轴左边的射线为由于在圆的外面,故有且仅有三个公共点等价于只有一个公共点且有两个公共点,或只有一个公共点且有两个公共点

只有一个公共点时,所在直线的距离为,所以,故

经检验,当时,没有公共点;当时,只有一个公共点,有两个公共点

只有一个公共点时,所在直线的距离为,所以,故

经检验,当时,没有公共点;当时,没有公共点

综上,所求的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了研究高中学生对乡村音乐的态度(喜欢和不喜欢两种态度)与性别的关系,运用2×2列联表进行独立性检验,经计算K2=8.01,附表如下:

P(K2≥k0

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

参照附表,得到的正确的结论是(  )

A. 有99%以上的把握认为“喜欢乡村音乐与性别有关”

B. 有99%以上的把握认为“喜欢乡村音乐与性别无关”

C. 在犯错误的概率不超过0.1%的前提下,认为“喜欢乡村音乐与性别有关”

D. 在犯错误的概率不超过0.1%的前提下,认为“喜欢乡村音乐与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一位数学老师在黑板上写了三个向量,其中都是给定的整数.老师问三位学生这三个向量的关系,甲回答:“平行,且垂直”,乙回答:“平行”,丙回答:“不垂直也不平行”,最后老师发现只有一位学生判断正确,由此猜测的值不可能为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大型水果超市每天以元/千克的价格从水果基地购进若干水果,然后以元/千克的价格出售,若有剩余,则将剩下的水果以元/千克的价格退回水果基地,为了确定进货数量,该超市记录了水果最近天的日需求量(单位:千克),整理得下表:

日需求量

频数

天记录的各日需求量的频率代替各日需求量的概率.

(1)求该超市水果日需求量(单位:千克)的分布列;

(2)若该超市一天购进水果千克,记超市当天水果获得的利润为(单位:元),求的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国家边防安全条例规定:当外轮与我国海岸线的距离小于或等于海里时,就会被警告.如图,设是海岸线上距离海里的两个观察站,满足,一艘外轮在点满足.

(1)满足什么关系时,就该向外轮发出警告令其退出我国海域?

(2)当时,间处于什么范围内可以避免使外轮进入被警告区域?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正三角形的边长为2,将它沿高翻折,使点与点间的距离为1,此时四面体外接球的表面积是________________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益(单位:万元)绘制成如图所示的频率分布直方图.由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的.

广告投入/万元

1

2

3

4

5

销售收益/万元

2

3

2

5

7

(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;

(Ⅱ)该公司按照类似的研究方法,测得另外一些数据,并整理得到上表:

表中的数据显示之间存在线性相关关系,求关于的回归方程;

(Ⅲ)若广告投入万元时,实际销售收益为万元,求残差.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于直线以及平面,下面命题中正确的是( )

A. ,则

B. ,则

C. ,则

D. ,且,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学将100名髙一新生分成水平相同的甲、乙两个平行班”,每班50.陈老师采用AB两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如下图).记成绩不低于90分者为成绩优秀

 

0.05

0.01

0.001

 

3.841

6.635

10.828

(I)从乙班随机抽取2名学生的成绩,成绩优秀的个数为,求的分布列和数学期望

(II)根据频率分布直方图填写下面2 x2列联表,并判断是否有95%的把握认为:“成绩优秀与教学方式有关.

甲班A方式)

乙班(B方式)

总计

成绩优秀

成绩不优秀

总计

附:

查看答案和解析>>

同步练习册答案