精英家教网 > 高中数学 > 题目详情

【题目】某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图,其中前三段的频率成等比数列.
(1)求图中实数a的值;
(2)若该校高一年级共有学生640人,试估计该校高一年级期中考试数学成绩不低于80分的人数;
(3)若从样本中数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生,记这两名学生成绩在[90,100]内的人数为X,求随机变量X的分布列和期望值.

【答案】
(1)解:∵频率分布直方图前三段的频率成等比数列,

∴由频率分布直方图,得:(10b)2=0.05×0.20,解得b=0.010,

∴a=0.1﹣0.005﹣0.010﹣0.020﹣0.025﹣0.010=0.030.


(2)解:成绩不低于80分的人数估计为:640×(0.025+0.010)×10=224.
(3)解:样本中成绩在[40,50)内的人数为40×0.005×10=2,

成绩在[90,100]内的人数为40×0.010×10=4,

X的所有可能取值为0,1,2,

P(X=0)= =

P(X=1)= =

P(X=2)= =

∴X的分布列为:

X

0

1

2

P

∴E(X)= =


【解析】(1)由等比数列性质及频率分布直方图,列出方程,能求出a.(2)利用频率分布直方图能求出成绩不低于80分的人数.(3)样本中成绩在[40,50)内的人数为2,成绩在[90,100]内的人数为4,X的所有可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列和E(X).
【考点精析】关于本题考查的离散型随机变量及其分布列,需要了解在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在长方体中,的中点,连接.

(1)求证:平面平面

(2)求二面角的正切值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,其左、右焦点分别为,点是坐标平面内一点,且 为坐标原点).

(1)求椭圆的方程;

(2)过点且斜率为的动直线交椭圆于两点,在轴上是否存在定点,使以为直径的圆恒过该点?若存在,求出点的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】神舟五号飞船成功完成了第一次载人航天飞行,实现了中国人民的航天梦想,某段时间飞船在太空中运行的轨道是一个椭圆,地球在椭圆的一个焦点上,如图所示,假设航天员到地球最近距离为d1 , 到地球最远距离为d2 , 地球的半径为R,我们想象存在一个镜像地球,其中心在神舟飞船运行轨道的另外一个焦点上,上面住着一个神仙发射某种神秘信号需要飞行中的航天员中转后地球人才能接收到,则神秘信号传导的最短距离为(
A.d1+d2+R
B.d2﹣d1+2R
C.d2+d1﹣2R
D.d1+d2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+ax2+bx(x>0)的图象与x轴相切于点(3,0). (Ⅰ)求函数f(x)的解析式;
(Ⅱ)若g(x)+f(x)=﹣6x2+(3c+9)x,命题p:x1 , x2∈[﹣1,1],|g(x1)﹣g(x2)|>1为假命题,求实数c的取值范围;
(Ⅲ)若h(x)+f(x)=x3﹣7x2+9x+clnx(c是与x无关的负数),判断函数h(x)有几个不同的零点,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|3x﹣1|﹣2|x|+2.
(1)解不等式:f(x)<10;
(2)若对任意的实数x,f(x)﹣|x|≤a恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别是角A,B,C的对边,△ABC的面积为S,(a2+b2)tanC=8S,且sinAcosB=2cosAsinB,则cosA=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x2﹣ax(a>0,且a≠1),g(x)=f′(x)(其中f′(x)为f(x)的导函数).
(1)当a=e时,求g(x)的极大值点;
(2)讨论f(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻转成△A1DE(A1平面ABCD),若M、O分别为线段A1C、DE的中点,则在△ADE翻转过程中,下列说法错误的是(
A.与平面A1DE垂直的直线必与直线BM垂直
B.异面直线BM与A1E所成角是定值
C.一定存在某个位置,使DE⊥MO
D.三棱锥A1﹣ADE外接球半径与棱AD的长之比为定值

查看答案和解析>>

同步练习册答案