分析 若l1⊥l2,则2sinθcosθ-$\sqrt{3}$(2cos2θ-1)=sin2θ-$\sqrt{3}$cos2θ=2sin(2θ-$\frac{π}{3}$)=0,进而得到答案.
解答 解:∵两直线l1:xcosθ-y(2cos2θ-1)+6=0和l2:2xsinθ+$\sqrt{3}$y+3=0,l1⊥l2,
∴2sinθcosθ-$\sqrt{3}$(2cos2θ-1)=sin2θ-$\sqrt{3}$cos2θ=2sin(2θ-$\frac{π}{3}$)=0,
故2θ-$\frac{π}{3}$=kπ,k∈Z,
故θ=$\frac{1}{2}$kπ+$\frac{π}{6}$,k∈Z,
故答案为:$\frac{1}{2}$kπ+$\frac{π}{6}$,k∈Z.
点评 本题考查的知识点是两条直线垂直的判定,二倍角公式,和差角公式,三角函数的定义,难度中档.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 8$\sqrt{2}$ | B. | 16$\sqrt{2}$ | C. | 16 | D. | 32 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 直线θ=$\frac{π}{3}$对称 | B. | 直线θ=$\frac{5π}{6}$对称 | C. | 点$(2,\frac{π}{3})$对称 | D. | 极点对称 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com