【题目】随着互联网的兴起,越来越多的人选择网上购物.某购物平台为了吸引顾客,提升销售额,每年双十一都会进行某种商品的促销活动.该商品促销活动规则如下:①“价由客定”,即所有参与该商品促销活动的人进行网络报价,每个人并不知晓其他人的报价,也不知道参与该商品促销活动的总人数;②报价时间截止后,系统根据当年双十一该商品数量配额,按照参与该商品促销活动人员的报价从高到低分配名额;③每人限购一件,且参与人员分配到名额时必须购买.某位顾客拟参加2019双十一该商品促销活动,他为了预测该商品最低成交价,根据该购物平台的公告,统计了最近5年双十一参与该商品促销活动的人数(见下表)
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份编号t | 1 | 2 | 3 | 4 | 5 |
参与人数(百万人) | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(1)由收集数据的散点图发现,可用线性回归模型模拟拟合参与人数(百万人)与年份编号之间的相关关系.请用最小二乘法求关于的线性回归方程:,并预测2019年双十一参与该商品促销活动的人数;
(2)该购物平台调研部门对2000位拟参与2019年双十一该商品促销活动人员的报价价格进行了一个抽样调查,得到如下的一份频数表:
报价区间(千元) |
| |||||
频数 | 200 | 600 | 600 | 300 | 200 | 100 |
①求这2000为参与人员报价的平均值和样本方差(同一区间的报价可用该价格区间的中点值代替);
②假设所有参与该商品促销活动人员的报价可视为服从正态分布,且与可分别由①中所求的样本平均值和样本方差估值.若预计2019年双十一该商品最终销售量为317400,请你合理预测(需说明理由)该商品的最低成交价.
参考公式即数据(i)回归方程:,其中,
(ii)
(iii)若随机变量服从正态分布,则,,
科目:高中数学 来源: 题型:
【题目】如图,抛物线关于轴对称,它的顶点在坐标原点,点、、均在抛物线上.
(1)写出该抛物线的方程及其准线方程;
(2)当与的斜率存在且倾斜角互补时,求的值及直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的焦点是椭圆: ()的顶点,且椭圆与双曲线的离心率互为倒数.
(Ⅰ)求椭圆的方程;
(Ⅱ)设动点, 在椭圆上,且,记直线在轴上的截距为,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的方程为,双曲线的左、右焦点分别为的左、右顶点,而的左、右顶点分别是的左、右焦点.
(1)求双曲线的方程;
(2)若直线与双曲线恒有两个不同的交点A和B,且(其中为原点),求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了迎接2019年全国文明城市评比,某市文明办对市民进行了一次文明创建知识的网络问卷调查.每一位市民有且仅有一次参加机会,通过随机抽样,得到参加问卷调查的1000人的得分(满分:100分)数据,统计结果如下表所示:
组别 | |||||||
频数 | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)由频数分布表可以认为,此次问卷调查的得分服从正态分布,近似为这1000人得分的平均值(同一组数据用该组区间的中点值作为代表),请利用正态分布的知识求;
(2)在(1)的条件下,文明办为此次参加问卷调查的市民制定如下奖励方案:
(i)得分不低于的可以获赠2次随机话费,得分低于的可以获赠1次随机话费;
(ii)每次获赠的随机话费和对应的概率为:
获赠的随机话费(单位:元) | 20 | 40 |
概率 |
现市民小王要参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列及数学期望.
附:①;
②若,则,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线:的焦点为,准线为,与轴的交点为,点在抛物线上,过点作于点,如图1.已知,且四边形的面积为.
(1)求抛物线的方程;
(2)若正方形的三个顶点,,都在抛物线上(如图2),求正方形面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆方程为,其右焦点与抛物线的焦点重合,过且垂直于抛物线对称轴的直线与椭圆交于、两点,与抛物线交于、两点.
(1)求椭圆的方程;
(2)若直线l与(1)中椭圆相交于,两点, 直线, ,的斜率分别为,, (其中),且,,成等比数列;设的面积为, 以、为直径的圆的面积分别为, , 求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com