精英家教网 > 高中数学 > 题目详情

【题目】已知函数y=sin2x+sin2x+3cos2x,求
(1)函数的最小值及此时的x的集合.
(2)函数的单调减区间.

【答案】
(1)解:∵y=sin2x+sin2x+3cos2x

=sin2x+cos2x+2

= sin(2x+ )+2,

∴当2x+ =2kπ﹣ (k∈Z),

即x=kπ﹣ (k∈Z)时,f(x)取得最小值2﹣

即f(x)min=2﹣ ,x的集合为{x|x=kπ﹣ ,k∈Z}


(2)解:由2kπ+ ≤2x+ ≤2kπ+ (k∈Z)得: +kπ≤x≤ +kπ(k∈Z),

∴该函数的单调减区间为[ +kπ, +kπ](k∈Z)


【解析】(1)利用三角函数中的恒等变换可求得f(x)= sin(2x+ )+2,利用正弦函数的性质即可求得函数的最小值及此时的x的集合;(2)解不等式组2kπ+ ≤2x+ ≤2kπ+ (k∈Z)即可求得该函数的单调减区间.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)=
(1)若f(x)>k的解集为{x|x<﹣3或x>﹣2},求k的值;
(2)若对任意x>0,f(x)≤t恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P﹣ABCD中,PA⊥面ABCD,∠DAB=90°,AB平行于CD,AD=CD=2AB=2,E,F分别为PC,CD的中点
(1)求证:AB⊥面BEF;
(2)设PA=h,若二面角E﹣BD﹣C大于45°,求h的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人上午7时,乘摩托艇以匀速vkm/h(8≤v≤40)从A港出发到距100km的B港去,然后乘汽车以匀速wkm/h(30≤w≤100)自B港向距300km的C市驶去.应该在同一天下午4至9点到达C市. 设乘坐汽车、摩托艇去目的地所需要的时间分别是xh,yh.
(1)作图表示满足上述条件的x,y范围;
(2)如果已知所需的经费p=100+3(5﹣x)+2(8﹣y)(元),那么v,w分别是多少时p最小?此时需花费多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设正项数列{an}的前n项和Sn , 且满足2Sn=an2+an
(1)求数列{an}的通项公式;
(2)若数列bn= + ,数列{bn}的前n项和为Tn , 求证:Tn<2n+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于平面向量 ,有下列三个命题:
①若 = ,则 =
②若 =(1,k), =(﹣2,6), ,则k=﹣3.
③非零向量 满足| |=| |=| |,则 + 的夹角为60°.
其中真命题的序号为 . (写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是棱形, 平面 ,点分别为中点,连接 .

(1)求证:直线平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)满足f(x+y)=f(x)f(y),且f(1)=
(1)当n∈N*时,求f(n)的表达式;
(2)设an=nf(n),n∈N* , 求证a1+a2+a3+…+an<2;
(3)设bn=(9﹣n) ,n∈N* , Sn为bn的前n项和,当Sn最大时,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=cos(ωx+φ)(ω>0,|φ|< )的图象上的每一点的纵坐标不变,横坐标缩短为原来的一半,再将图象向右平移 个单位长度得到函数y=sinx的图象.
(1)直接写出f(x)的表达式,并求出f(x)在[0,π]上的值域;
(2)求出f(x)在[0,π]上的单调区间.

查看答案和解析>>

同步练习册答案