精英家教网 > 高中数学 > 题目详情

【题目】祖暅原理也就是等积原理,它是由我国南北朝杰出的数学家祖冲之的儿子祖暅首先提出来的.祖暅原理的内容是:幂势既同,则积不容异即是高,是面积.意思是,如果夹在两平行平面间的两个几何体,被平行于这两个平行平面的平面所截,如果两个截面的面积总相等,那么这两个几何体的体积相等.已知,两个平行平面间有三个几何体,分别是三棱锥、四棱锥、圆锥(高度都是h),其中:三棱锥的体积为V,四棱锥的底面是边长为a的正方形,圆锥的底面半径为r,现用平行于这两个平面的平面去截三个几何体,如果得到的三个截面面积总相等,那么,下面关系式正确的是(

A.B.

C.D.

【答案】D

【解析】

由祖暅原理可知:三个几何体的体积相等,根据椎体体积公式即可求解.

由祖暅原理可知:三个几何体的体积相等,

,解得

,解得

所以.

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C)的左、右焦点分别为.椭圆C的长轴与焦距之比为,过的直线lC交于AB两点.

1)求椭圆的方程;

2)当l的斜率为1时,求的面积;

3)当线段的垂直平分线在y轴上的截距最小时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:在轴上的一个焦点,与短轴两个端点的连线互相垂直,且右焦点坐标为

1)求椭圆的方程;

2)设直线与圆相切,和椭圆交于两点,为原点,线段分别和圆交于两点,设的面积分别为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在点处取得极值.

(1)求的值;

(2)若有极大值,求上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是边长为2的菱形,,平面,点是棱的中点.

(1)证明:平面

(2)当时,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点为,离心率为.

(1)求椭圆的标准方程;

(2)若动点为椭圆外一点,且点到椭圆的两条切线相互垂直,求点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A4纸是生活中最常用的纸规格.A系列的纸张规格特色在于:①A0A1A2A5,所有尺寸的纸张长宽比都相同.②在A系列纸中,前一个序号的纸张以两条长边中点连线为折线对折裁剪分开后,可以得到两张后面序号大小的纸,比如1A0纸对裁后可以得到2A1纸,1A1纸对裁可以得到2A2纸,依此类推.这是因为A系列纸张的长宽比为1这一特殊比例,所以具备这种特性.已知A0纸规格为84.1厘米×118.9厘米.118.9÷84.1≈1.41≈,那么A4纸的长度为(  )

A.厘米B.厘米C.厘米D.厘米

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某超市,随机调查了100名顾客购物时使用手机支付的情况,得到如下的列联表,已知从其中使用手机支付的人群中随机抽取1人,抽到青年的概率为.

青年

中老年

合计

使用手机支付

60

不使用手机支付

28

合计

100

1)根据已知条件完成列联表,并根据此资料判断是否有99.9%的把握认为超市购物用手机支付与年龄有关”.

2)现按照使用手机支付不使用手机支付进行分层抽样,从这100名顾客中抽取容量为5的样本,求从样本中任选3人,则3人中至少2人使用手机支付的概率.

(其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABCD为平面内的四点,且A(1,3),B(2,–2),C(4,1).

(1)若,求D点的坐标;

(2)设向量,若k+3平行,求实数 的值.

查看答案和解析>>

同步练习册答案