精英家教网 > 高中数学 > 题目详情

【题目】某种商品在50个不同地区的零售价格全部介于13元与18元之间,将各地价格按如下方式分成五组:第一组,第二组……,第五组.如图是按上述分组方法得到的频率分布直方图.

1)求价格落在内的地区数;

2)借助频率分布直方图,估计该商品价格的中位数(精确到0.1);

3)现从这两组的全部样本数据中,随机选取两个地区的零售价格,记为,求事件的概率.

【答案】116;(215.7元;(3.

【解析】

1)根据总面积为求出价格落在内的地区数;

2)根据中位数两边的面积都是求出中位数;

3)根据古典概型求解即可,首先求出基本事件总数,再求出事件的事件数即可求出答案.

1)价格在内的频率为:

所以价格在内的地区数为

2)设价格中位数为

解得(元);

3)由直方图知,

价格在的地区数为

设为

价格在的地区数为

设为

时,

3种情况,

时,

6种情况,

分别在内时,

共有12种情况,

所以基本事件总数为21种,

事件所包含的基本事件个数有12种,

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知三棱锥的所有顶点都在球的球面上,平面,若球的表面积为,则三棱锥的侧面积的最大值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据下列条件求方程.

(1)已知顶点的坐标为,求外接圆的方程;

(2)若过点的直线被圆所截的弦长为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是抛物线上的两个点,点的坐标为,直线的斜率为.设抛物线的焦点在直线的下方.

)求k的取值范围;

)设CW上一点,且,过两点分别作W的切线,记两切线的交点为. 判断四边形是否为梯形,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数为奇函数,且有极小值.

1)求实数的值;

2)求实数的取值范围;

3)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的偶函数满足,且,当时,.已知方程在区间上所有的实数根之和为.将函数的图象向右平移个单位长度,得到函数的图象,则____________________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,已知四边形是边长为的正方形,点在底面上的射影为底面的中心点,点在棱上,且的面积为1.

1)若点的中点,求证:平面平面

2)在棱上是否存在一点使得二面角的余弦值为?若存在,求出点的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学举行了一次环保知识竞赛 全校学生参加了这次竞赛.为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本进行统计.请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:


组别

分组

频数

频率

1

[5060

8

0 16

2

[6070

a


3

[7080

20

0 40

4

[8090


0 08

5

[90100]

2

b


合计



1)求出的值;

2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到广场参加环保知识的志愿宣传活动

)求所抽取的2名同学中至少有1名同学来自第5组的概率;

)求所抽取的2名同学来自同一组的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,令表示集合所含元素的个数.

1)写出的值;

2)当时,写出的表达式,并用数学归纳法证明.

查看答案和解析>>

同步练习册答案