【题目】已知函数.
(1)当时,求的定义域;
(2)试判断函数在区间上的单调性,并给出证明;
(3)若在区间上恒取正值,求实数的取值范围.
【答案】(1);(2)函数在区间上是减函数,证明见解析;(3)
【解析】
(1)将代入得到的解析式,根据解析式要有意义,列出不等式,求解即可得到的定义域;
(2)利用函数单调性的定义,令,先判断出,再根据对数的单调性,判断出,从而证明结结论;
(3)将在上恒取正值,等价为在上恒成立,转化为,利用的单调性即可求出的最小值,从而列出不等式,求解即可得到的取值范围.
(1)当时,,
,即,
,即,
∴函数的定义域为;
(2)函数在区间上是减函数.
证明:任取,且,
,
令,
,
,,
,即,
,
,
∴,
∴在上是减函数;
(3)由(2)可知,在上是减函数,
∴在上是单调递减函数,
∴在上的最小值为,
∵在上恒取正值,即在上恒成立,
,
,即,
,
,
,
故的取值范围为.
科目:高中数学 来源: 题型:
【题目】某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.
(1)写出第一次服药后,y与t之间的函数关系式y=f(t);
(2)据进一步测定:每毫升血液中含药量不少于0.25微克时,治疗有效.求服药一次后治疗有效的时间是多长?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标平面内,以坐标原点为极点, 轴的非负半轴为极轴建立极坐标系.已知点、的极坐标分别为、,曲线的参数方程为(为参数).
(1)求直线的直角坐标方程;
(2)若直线和曲线只有一个交点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当时,求函数的单调递增区间;
(2)将函数的图象向左平移个单位后,所得图象对应的函数为.若关于的方程在区间上有两个不相等的实根,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某运动员每次投篮命中的概率都为50%,现采用随机模拟的方法估计该运动员四次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定0,1,2,3,4表示命中,5,6,7,8 9表示不命中;再以每四个随机数为一组,代表四次投篮的结果.经随机模拟产生了20组随机数:9075 9660 1918 9257 2716 9325 8121 4589 5690 6832 4315 2573 3937 9279 5563 4882 7358 1135 1587 4989
据此估计,该运动员四次投篮恰有两次命中的概率为____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com