精英家教网 > 高中数学 > 题目详情
20.已知直线l在y轴上的截距为10,且原点到直线l的距离是8,则直线l的方程为3x+4y-40=0,3x-4y+40=0.

分析 由题意设出直线方程,再根据点到直线的距离公式即可求出直线方程.

解答 解:直线l在y轴上的截距为10,且原点到直线l的距离是8,设直线方程为$\frac{x}{a}$+$\frac{y}{10}$=1,即10x+ay-10a=0,
∴d=$\frac{|-10a|}{\sqrt{1{0}^{2}+{a}^{2}}}$=8,
解得a=±$\frac{40}{3}$,
故直线方程为10x+$\frac{40}{3}$y-10×$\frac{40}{3}$=0,或10x+$\frac{40}{3}$y+10×$\frac{40}{3}$=0,即3x+4y-40=0,3x-4y+40=0,
故答案为:3x+4y-40=0,3x-4y+40=0.

点评 本题考查了点到直线的距离公式,以及直线方程,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{4}$=1与直线y=-$\frac{2}{3}$x+m(m∈R)的公共点的个数为0或1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知二次函数f(x)=ax2+bx+1满足f(-1)=0,且对于任意的x均有f(x)≥0成立.
(1)当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;
(2)设$\frac{1}{3}$≤t≤1,若h(x)=tf(x)-(2t+2)x-t+1在区间[1,3]上的最大值记为M(t),最小值记为N(t),令r(t)=M(t)-N(t),求r(t)的解析式及其最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若函数y=$\sqrt{-{x}^{2}+ax+b}$的定义域为[1,2],则a+b=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.计算:3${\;}^{lo{g}_{3}2}$-2(log34)(log827)-$\frac{1}{3}$log68+2log${\;}_{\frac{1}{6}}$$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,点E为△ABC中AB边的中点,点F为AC的三等分点(靠近点A),BF交CE于点G,若$\overrightarrow{AG}$=x$\overrightarrow{AE}$+y$\overrightarrow{AF}$,则x+y=$\frac{7}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=lgx-6+3x的零点x0∈(k,k+1),k∈Z,则k=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.6个人带10瓶矿泉水参加春游,每个人至少带一瓶,有多少种不同的带法?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆$\frac{x^2}{25}+\frac{y^2}{9}$=1的弦AB的中点为M(3,2).坐标原点为O.
(1)求直线AB的方程;   
(2)求△AOB的面积.

查看答案和解析>>

同步练习册答案