分析 (1)菱形的对角线AC⊥BD,结合已知条件AC⊥PD,利用线面垂直的判定定理可得AC⊥平面PBD;
(2)利用面面垂直的性质定理,结合AC⊥BD得到BD⊥平面PAC,从而BD⊥PO且PO是BD的垂直平分线,得到|PB|=|PD|;
解答 证明:(1)因为底面ABCD是菱形,所以AC⊥BD.
又因为AC⊥PD,PD∩BD=D,
所以AC⊥平面PBD…(4分)
(2)由(1)知AC⊥BD.
因为平面PAC⊥平面ABCD,平面PAC∩平面ABCD=AC,
BD?平面ABCD,
所以BD⊥平面PAC.
因为PO?平面PAC,
所以BD⊥PO.
因为底面ABCD是菱形,
所以|BO|=|DO|,
所以|PB|=|PD|.…(10分)
点评 本题给出一个特殊四棱锥,要我们证明线面垂直,着重考查了空间平行、垂直位置关系的判断与证明等知识,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 3x-y-5=0 | B. | 3x-y+5=0 | C. | x+3y+13=0 | D. | x+3y-35=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com