已知函数.
(Ⅰ)当时,函数取得极大值,求实数的值;
(Ⅱ)已知结论:若函数在区间内存在导数,则存在
,使得. 试用这个结论证明:若函数
(其中),则对任意,都有;
(Ⅲ)已知正数满足,求证:对任意的实数,若时,都
有.
(Ⅰ) ;(2)详见解析;(3)详见解析.
解析试题分析:(Ⅰ)利用导数法判断函数的单调性,根据函数在极值时有极值求出参数的值;(Ⅱ)构造新函数再利用导数法求解;(Ⅲ)由已知条件得出,再利用第(Ⅱ)问的结论对任意,都有求解.
试题解析:(Ⅰ)由题设,函数的定义域为,且
所以,得,此时.
当时,,函数在区间上单调递增;
当时,,函数在区间上单调递减.
函数在处取得极大值,故 4分
(Ⅱ)令,
则.
因为函数在区间上可导,则根据结论可知:存在
使得 7分
又,
当时,,从而单调递增,;
当时,,从而单调递减,;
故对任意,都有 . 9分
(Ⅲ),且,,
同理, 12分
由(Ⅱ)知对任意,都有,从而
. 14分
考点:导数的基本运算;导数与函数的单调性关系;不等式的基本性质与证明.
科目:高中数学 来源: 题型:解答题
已知函数.
(1) 当时,求函数的单调区间;
(2) 当时,函数图象上的点都在所表示的平面区域内,求实数的取值范围.
(3) 求证:,(其中,是自然对数的底).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com