精英家教网 > 高中数学 > 题目详情
已知中心在坐标原点,以坐标轴为对称轴的双曲线C过点,且点Q在x轴上的射影恰为该双曲线的一个焦点F,
(Ⅰ)求双曲线C的方程;
(Ⅱ)命题:“过椭圆的一个焦点F作与x轴不垂直的任意直线l交椭圆于A.B两点,线段AB的垂直平分线交x轴于点M,则为定值,且定值是”。命题中涉及了这么几个要素:给定的圆锥曲线E,过该圆锥曲线焦点F的弦AB,AB的垂直平分线与焦点所在的对称轴的交点M,AB的长度与F,M两点间的距离的比值.
试类比上述命题,写出一个关于双曲线C的类似的正确命题,并加以证明;
(Ⅲ)试推广(Ⅱ)中的命题,写出关于圆锥曲线(椭圆、双曲线、抛物线)的统一的一般性命题(不必证明)。
解:(Ⅰ)依题意,可设双曲线C的方程为
由已知得C的一个焦点
所以C的另一个焦点为


又a=2,
所以,
所以,双曲线C的方程为
(Ⅱ)关于双曲线C的类似命题为:过双曲线的焦点F1(2,0)作与x轴不垂直的任意直线l交双曲线于A,B两点,线段AB的垂直平分线交x轴于点M,则为定值,且定值是
证明如下:由于l与x轴不垂直,可设直线l的方程为:y=k(x-2),
①当k=0时,l与x轴重合,,命题正确;
②当k≠0时,由
依题意l与C有两个交点A,B,所以,


所以线段AB的中点P的坐标为
AB的垂直平分线MP的方程为:
令y=0,解得:
,所以,



所以,
(Ⅲ)过圆锥曲线E的焦点F作与焦点所在的对称轴不垂直的任意直线l交E于A,B两点,线段AB的垂直平分线交焦点所在的对称轴于点M,则为定值,定值是(其中e为圆锥曲线E的离心率)。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知中心在坐标原点的椭圆经过直线x-2y-4=0与坐标轴的两个交点,则该椭圆的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点,
( I)求椭圆C的方程;
( I I)问是否存在直线l:y=
32
x+t
,使直线l与椭圆C有公共点,且原点到直线l的距离为4?若存在,求出l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•丽水一模)已知中心在坐标原点,焦点在x轴上的椭圆过点P(2,3),且它的离心率e=
1
2

(Ⅰ)求椭圆的标准方程;
(Ⅱ)与圆(x+1)2+y2=1相切的直线l:y=kx+t交椭圆于M,N两点,若椭圆上一点C满足
OM
+
ON
OC
,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南模拟)已知中心在坐标原点焦点在x轴上的椭圆C,其长轴长等于4,离心率为
2
2

(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点E(0,1),问是否存在直线l:y=kx+m与椭圆C交于M,N两点,且|ME|=|NE|?若存在,求出k的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在坐标原点的双曲线C的焦距为6,离心率等于3,则双曲线C的标准方程为
 

查看答案和解析>>

同步练习册答案