精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= x3﹣4x+4,
(1)求f(x)的单调区间;
(2)求f(x)在[0,3]上的最大值和最小值.

【答案】
(1)解:因为 ,所以f'(x)=x2﹣4=(x+2)(x﹣2)…(2分)

由f'(x)>0得x<﹣2或x>2,

故函数f(x)的单调递增区间为(﹣∞,﹣2),(2,+∞); …

由f'(x)<0得﹣2<x<2

故函数f(x)的单调递减区间为(﹣2,2)


(2)解:令f'(x)=x2﹣4=0得x=±2

由(1)可知,在[0,3]上f(x)有极小值

而f(0)=4,f(3)=1,

因为

所以f(x)在[0,3]上的最大值为4,最小值为


【解析】(1)求导数,利用导数的正负,即可求f(x)的单调区间;(2)由(1)可知,在[0,3]上f(x)有极小值 ,而f(0)=4,f(3)=1,即可求f(x)在[0,3]上的最大值和最小值.
【考点精析】通过灵活运用利用导数研究函数的单调性,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,(其中A>0,ω>0,0<φ)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为M(,-2).

(1)求f(x)的解析式;

(2)将函数f(x)的图象向右平移个单位后,再将所得图象上各点的横坐标缩小到原来的,纵坐标不变,得到yg(x)的图象,求函数yg(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥SABCD的底面为正方形,SD⊥底面ABCD,则下列结论

ACSB

AB∥平面SCD

SA与平面ABD所成的角等于SC与平面ABD所成的角

ABSC所成的角等于DCSA所成的角.

⑤二面角的大小为

其中,正确结论的序号是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数上单调递增.

1)求实数的值,并写出相应的函数的解析式;

(2)若在区间上不单调,求实数的取值范围;

(3)试判断是否存在正数使函数在区间上的值域为若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax+ ,其中函数f(x)的图象在点(1,f(1))处的切线方程为y=x﹣1.
(1)若a= ,求函数f(x)的解析式;
(2)若f(x)≥g(x)在[1,+∞)上恒成立,求实数a的取值范围;
(3)证明:1+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙俩人各进行3次射击,甲每次击中目标的概率为 ,乙每次击中目标的概率为 . (Ⅰ)记甲恰好击中目标2次的概率;
(Ⅱ)求乙至少击中目标2次的概率;
(Ⅲ)求乙恰好比甲多击中目标2次的概率;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,收集数据如下:

加工零件x(个)

10

20

30

40

50

加工时间y(分钟)

64

69

75

82

90

经检验,这组样本数据具有线性相关关系,那么对于加工零件的个数x与加工时间y这两个变量,下列判断正确的是(
A.成正相关,其回归直线经过点(30,75)
B.成正相关,其回归直线经过点(30,76)
C.成负相关,其回归直线经过点(30,76)
D.成负相关,其回归直线经过点(30,75)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn=1﹣nan(n∈N*
(1)计算a1 , a2 , a3 , a4
(2)猜想an的表达式,并用数学归纳法证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,其中a>0且a≠1.若a= 时方程f(x)=b有两个不同的实根,则实数b的取值范围是;若f(x)的值域为[2,+∞),则实数a的取值范围是

查看答案和解析>>

同步练习册答案