精英家教网 > 高中数学 > 题目详情
已知
a
=(1,sinα,cosα),
b
=(-1,sinα,cosα)分别是直线l1、l2的方向向量,则直线l1、l2的位置关系是(  )
分析:利用向量的数量积公式,验证
a
b
=0,即可得到结论.
解答:解:∵
a
=(1,sinα,cosα),
b
=(-1,sinα,cosα),
a
b
=-1+sin2α+cos2α=0
a
b
是直线l1、l2的方向向量,
∴l1⊥l2
故选B.
点评:本题考查向量的数量积公式,考查学生的计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
=(1,sinθ),
b
=(1,cosθ),(θ∈R)
(1)若
a
+
b
=(2,0)
,求sin2θ+2sinθcosθ得值.
(2)若
a
-
b
=(0,
1
5
),求sinθ+cosθ得值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(1,sinα),
b
=(2,sin(α+2β)),
a
b

(1)若sinβ=
3
5
,β是钝角,求tanα的值;
(2)求证:tan(α+β)=3tanβ.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(1,sinα),
b
=(cosα,-1),且
a
b
,则锐角α的大小为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
a
=(1,sinα),
b
=(2,sin(α+2β)),
a
b

(1)若sinβ=
3
5
,β是钝角,求tanα的值;
(2)求证:tan(α+β)=3tanβ.

查看答案和解析>>

同步练习册答案