精英家教网 > 高中数学 > 题目详情
10.如图所示,过抛物线x2=4py(p>0)焦点的直线依次交抛物线与圆x2+(y-p)2=p2于点A,B,C,D,则$\overrightarrow{AB}$•$\overrightarrow{CD}$的值是(  )
A.8p2B.4p2C.2p2D.p2

分析 设A、D的坐标分别为(x1,y1),(x2,y2)及直线方程,联立直线和抛物线的方程求出y1•y2,并用y1,y2表示AF,FD,代入上述式子中即可.

解答 解:设A、D的坐标分别为(x1,y1),(x2,y2),依题意知焦点F(0,p),
则设直线AD方程为:y=kx+p,
联立消去x,得y2-(2p+4pk2)y+p2=0,
∴y1•y2=p2
又根据抛物线定义得AF=y1+p,FD=y2+p,
∴$\overrightarrow{AB}$•$\overrightarrow{CD}$=|$\overrightarrow{AB}$||$\overrightarrow{CD}$|=(AF-p)(FD-p)=y1•y2=p2
故选:D.

点评 此题设计构思比较新颖,考查抛物线的定义及巧妙将向量数量积转化,同时在解答过程中处理直线和抛物线的关系时运用了设而不求的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.求函数f(x)=$\frac{1}{3}$x3-4x+$\frac{1}{3}$的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.计算下列不定积分
(1)∫$\frac{{3}^{x}-{e}^{x}}{{2}^{x}}$dx;
(2)∫$\frac{1}{{x}^{2}(1+{x}^{2})}$dx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.方程x3-3x+c=0在[0,1]上只有一个实数根,求c的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{1}{2}$x-$\frac{1}{4}$sinx-$\frac{\sqrt{3}}{4}$cosx的图象在点A(x0,f(x0))处的切线斜率为$\frac{1}{2}$,求tanx0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在△ABC中,已知点D在AB边上,且$\overrightarrow{CB}$•$\overrightarrow{CD}$=0,sin∠ACB=$\frac{5\sqrt{7}}{14}$,AC=$\sqrt{7}$,AD=1.
(Ⅰ)求CD的长;
(Ⅱ)求角B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.下列三个图分别是四棱锥A-BCEF的直观图、侧视图、俯视图,在直观图中,侧面ABC⊥底面BCEF,M为AC的中点,侧视图是等边三角形,俯视图是直角梯形,有关数据如图所示.
(1)求证:BM∥面AEF;
(2)求证:AE⊥BM;
(3)求该四棱锥A-BCEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.己知椭圆的对称中心为原点O,焦点在x轴上,椭圆上异于长轴顶点的任意点A与左右两焦点F1,F2 构成的三角形中面积的最大值为$\sqrt{3}$,且点($\sqrt{3}$,$\frac{\sqrt{3}}{2}$)在该椭圆上.
(1)求椭圆的方程:
(2)已知点A,B是椭圆上的两动点,若OA⊥OB时,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,AB⊥BC侧面PAB⊥底面ABCD,PA=AD=AB=2,BC=4,∠PAB=60° 
(I)若PE中点为.求证:AE∥平面PCD;
(Ⅱ)若G是PC的中点,求三棱锥P-BDG的体积.

查看答案和解析>>

同步练习册答案