【题目】在直角坐标系中,圆C1:x2+y2=1经过伸缩变换 后得到曲线C2以坐标原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的单位长度,建立极坐标系,直线l的极坐标方程为cosθ+2sinθ=
(1)求曲线C2的直角坐标方程及直线l的直角坐标方程;
(2)在C2上求一点M,使点M到直线l的距离最小,并求出最小距离.
【答案】
(1)解:∵ 后得到曲线C2,
∴ ,代入圆C1:x2+y2=1得: ,
故曲线C2的直角坐标方程为 ;
直线l的极坐标方程为cosθ+2sinθ= .
即ρcosθ+2ρsinθ=10,即x+2y﹣10=0,
(2)将直线x+2y﹣10=0平移与C2相切时,则第一象限内的切点M满足条件,
设过M的直线为x+2y+C=0,
则由 得: x2+ Cx+ C2﹣36=0,
由△=( C)2﹣4× ×( C2﹣36)=0得:C=± ,
故x= ,或x=﹣ ,(舍去),
则y= ,
即M点的坐标为( , ),
则点M到直线l的距离d= =
【解析】(1)圆经过伸缩变换后得到的是椭圆,本题关键在于将变为带入圆的方程从而得出结果,极坐标方程化为直角坐标方程需要用到极化直公式
(2)必需要求出点M的坐标,而满足条件的点M 是直线x+2y+C=0与椭圆的切点,从而联立方程组求出点M的坐标
科目:高中数学 来源: 题型:
【题目】为了竖一块广告牌,要制造三角形支架,如图,要求∠ACB=60°,BC的长度大于1米,且AC比AB长0.5米,为了稳固广告牌,要求AC越短越好,则AC最短为( )
A.(1+ )米
B.2米
C.(1+ )米
D.(2+ )米
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记等差数列{an}的前n项和为Sn .
(1)求证:数列{ }是等差数列;
(2)若a1=1,对任意的n∈N*,n≥2,均有 , , 是公差为1的等差数列,求使 为整数的正整数k的取值集合;
(3)记bn=a (a>0),求证: ≤ .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx+x2 .
(Ⅰ)若函数g(x)=f(x)﹣ax在其定义域内为增函数,求实数a的取值范围;
(Ⅱ)在(Ⅰ)的条件下,若a>1,h(x)=e3x﹣3aexx∈[0,ln2],求h(x)的极小值;
(Ⅲ)设F(x)=2f(x)﹣3x2﹣kx(k∈R),若函数F(x)存在两个零点m,n(0<m<n),且2x0=m+n.问:函数F(x)在点(x0 , F(x0))处的切线能否平行于x轴?若能,求出该切线方程;若不能,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在△ABC中,角A,B,C所对的边分别为a,b,c,且3bsinA=c,D为AC边上一点.
(1)若D是AC的中点,且 , ,求△ABC的最短边的边长.
(2)若c=2b=4,S△BCD= ,求DC的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}是公差为2的等差数列,数列{bn}满足 ,若n∈N*时,anbn+1﹣bn+1=nbn .
(Ⅰ)求{bn}的通项公式;
(Ⅱ)设 ,求{Cn}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=﹣x3+x2(x∈R),g(x)满足g′(x)= (a∈R,x>0),且g(e)=a,e为自然对数的底数.
(Ⅰ)已知h(x)=e1﹣xf(x),求h(x)在(1,h(1))处的切线方程;
(Ⅱ)若存在x∈[1,e],使得g(x)≥﹣x2+(a+2)x成立,求a的取值范围;
(Ⅲ)设函数F(x)= ,O为坐标原点,若对于y=F(x)在x≤﹣1时的图象上的任一点P,在曲线y=F(x)(x∈R)上总存在一点Q,使得 <0,且PQ的中点在y轴上,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,AB=2,PA=1,PA⊥平面ABCD,E是PC的中点,F是AB的中点.
(Ⅰ)求证:BE∥平面PDF;
(Ⅱ)求平面PAB与平面PCD所成的锐二面角的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com