精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,圆C1:x2+y2=1经过伸缩变换 后得到曲线C2以坐标原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的单位长度,建立极坐标系,直线l的极坐标方程为cosθ+2sinθ=
(1)求曲线C2的直角坐标方程及直线l的直角坐标方程;
(2)在C2上求一点M,使点M到直线l的距离最小,并求出最小距离.

【答案】
(1)解:∵ 后得到曲线C2

,代入圆C1:x2+y2=1得:

故曲线C2的直角坐标方程为

直线l的极坐标方程为cosθ+2sinθ=

即ρcosθ+2ρsinθ=10,即x+2y﹣10=0,


(2)将直线x+2y﹣10=0平移与C2相切时,则第一象限内的切点M满足条件,

设过M的直线为x+2y+C=0,

则由 得: x2+ Cx+ C2﹣36=0,

由△=( C)2﹣4× ×( C2﹣36)=0得:C=±

故x= ,或x=﹣ ,(舍去),

则y=

即M点的坐标为( ),

则点M到直线l的距离d= =


【解析】(1)圆经过伸缩变换后得到的是椭圆,本题关键在于将变为带入圆的方程从而得出结果,极坐标方程化为直角坐标方程需要用到极化直公式
(2)必需要求出点M的坐标,而满足条件的点M 是直线x+2y+C=0与椭圆的切点,从而联立方程组求出点M的坐标

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了竖一块广告牌,要制造三角形支架,如图,要求∠ACB=60°,BC的长度大于1米,且AC比AB长0.5米,为了稳固广告牌,要求AC越短越好,则AC最短为(  )

A.(1+ )米
B.2米
C.(1+ )米
D.(2+ )米

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记等差数列{an}的前n项和为Sn
(1)求证:数列{ }是等差数列;
(2)若a1=1,对任意的n∈N*,n≥2,均有 是公差为1的等差数列,求使 为整数的正整数k的取值集合;
(3)记bn=a (a>0),求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+x2
(Ⅰ)若函数g(x)=f(x)﹣ax在其定义域内为增函数,求实数a的取值范围;
(Ⅱ)在(Ⅰ)的条件下,若a>1,h(x)=e3x﹣3aexx∈[0,ln2],求h(x)的极小值;
(Ⅲ)设F(x)=2f(x)﹣3x2﹣kx(k∈R),若函数F(x)存在两个零点m,n(0<m<n),且2x0=m+n.问:函数F(x)在点(x0 , F(x0))处的切线能否平行于x轴?若能,求出该切线方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,角A,B,C所对的边分别为a,b,c,且3bsinA=c,D为AC边上一点.

(1)若D是AC的中点,且 ,求△ABC的最短边的边长.
(2)若c=2b=4,S△BCD= ,求DC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是公差为2的等差数列,数列{bn}满足 ,若n∈N*时,anbn+1﹣bn+1=nbn
(Ⅰ)求{bn}的通项公式;
(Ⅱ)设 ,求{Cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线x+2y=m(m>0)与⊙O:x2+y2=5交于A,B两点,若| + |>2| |,则m的取值范围是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣x3+x2(x∈R),g(x)满足g′(x)= (a∈R,x>0),且g(e)=a,e为自然对数的底数.
(Ⅰ)已知h(x)=e1﹣xf(x),求h(x)在(1,h(1))处的切线方程;
(Ⅱ)若存在x∈[1,e],使得g(x)≥﹣x2+(a+2)x成立,求a的取值范围;
(Ⅲ)设函数F(x)= ,O为坐标原点,若对于y=F(x)在x≤﹣1时的图象上的任一点P,在曲线y=F(x)(x∈R)上总存在一点Q,使得 <0,且PQ的中点在y轴上,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,AB=2,PA=1,PA⊥平面ABCD,E是PC的中点,F是AB的中点.

(Ⅰ)求证:BE∥平面PDF;
(Ⅱ)求平面PAB与平面PCD所成的锐二面角的大小.

查看答案和解析>>

同步练习册答案