精英家教网 > 高中数学 > 题目详情

已知椭圆)的离心率,左、右焦点分别为,点,点在线段的中垂线上.

(1)求椭圆的方程;

(2)设直线与椭圆交于两点,直线的倾斜角分别为,且,求证:直线经过定点,并求该定点的坐标

 

【答案】

解:(1)设椭圆的左、右焦点分别为

∵点在线段的中垂线上,∴,因此

解得:,又∵,∴

故所求的椭圆方程为:…………6分

(2)依题意,消去,得:

,则……9分

,依题意得:, 即:

,化简得:

,整理得:……12分

∴直线的方程为,因此直线经过定点,该定点坐标为

                                     ……………………………………14分

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•淮南二模)已知椭圆C:
x2
a2
+
y2
b2
=1,(a>b>0)与双曲4x2-
4
3
y2=1有相同的焦点,且椭C的离心e=
1
2
,又A,B为椭圆的左右顶点,M为椭圆上任一点(异于A,B).
(1)求椭圆的方程;
(2)若直MA交直x=4于点P,过P作直线MB的垂线x轴于点Q,Q的坐标;
(3)求点P在直线MB上射R的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆),过椭圆中心O作互相垂直的两条弦AC、BD,设点A、B的离心角分别为,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试理科数学(山东卷解析版) 题型:选择题

已知椭圆的离心学率为.双曲线的渐近线与椭圆有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆的方程为

(A)     (B) 

(C)     (D)

 

查看答案和解析>>

科目:高中数学 来源:2013届福建省高二第一学期期末考试理科数学试卷 题型:解答题

已知椭圆E的下焦点为、上焦点为,其离心 率。过焦点F2且与轴不垂直的直线l交椭圆于AB两点。

(1)求实数的值;  

(2)求DABOO为原点)面积的最大值.

 

查看答案和解析>>

科目:高中数学 来源:2012年安徽省淮北市高考数学二模试卷(文科)(解析版) 题型:解答题

已知椭圆C:+=1,(a>b>0)与双曲4x2-y2=1有相同的焦点,且椭C的离心e=,又A,B为椭圆的左右顶点,M为椭圆上任一点(异于A,B).
(1)求椭圆的方程;
(2)若直MA交直x=4于点P,过P作直线MB的垂线x轴于点Q,Q的坐标;
(3)求点P在直线MB上射R的轨迹方程.

查看答案和解析>>

同步练习册答案