精英家教网 > 高中数学 > 题目详情

【题目】某几何体的三视图如图所示,则此几何体的体积为( )

A. B. C. D.

【答案】C

【解析】分析: 由三视图还原原几何体,可知该几何体为三棱锥P﹣ABC,底面三角形ABC是等腰直角三角形,然后由棱锥体积公式求解.

详解: 由三视图还原原几何体如图:

该几何体为三棱锥P﹣ABC,底面三角形ABC是等腰直角三角形,

该四面体的体积是V=

故选:C.

点睛: 三视图问题的常见类型及解题策略

(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.

(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.

(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 )经过点,且两焦点与短轴的一个端点的连线构成等腰直角三角形.

(1)求椭圆的方程;

(2)动直线 )交椭圆两点,试问:在坐标平面上是否存在一个定点,使得以为直径的圆恒过点.若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

时,讨论函数的单调性;

求函数在区间上零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是  

A. 至少有一个白球;都是白球 B. 至少有一个白球;至少有一个红球

C. 至少有一个白球;红、黑球各一个 D. 恰有一个白球;一个白球一个黑球

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在点处的切线为

)若直线的斜率为,求函数的单调区间.

)若函数是区间上的单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车的普及给人们的出行带来了诸多方便,但汽车超速行驶也造成了诸多隐患.为了解某一段公路汽车通过时的车速情况,现随机抽测了通过这段公路的200辆汽车的时速,所得数据均在区间中,其频率分布直方图如图所示.

(1)求被抽测的200辆汽车的平均时速.

(2)该路段路况良好,但属于事故高发路段,交警部门对此路段过往车辆限速.对于超速行驶,交警部门对超速车辆有相应处罚:记分(扣除驾驶员驾照的分数)和罚款.罚款情况如下:

超速情况

10%以内

10%~20%

20%~50%

50%以上

罚款情况

0元

100元

150元

可以并处吊销驾照

①求被抽测的200辆汽车中超速在10%~20%的车辆数.

②该路段车流量比较大,按以前统计该路段每天来往车辆约2000辆.试预估每天的罚款总数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴为极轴建立极坐标系,曲线的极坐标方程为

(Ⅰ)求曲线的普通方程和曲线的直角坐标方程;

(Ⅱ)若曲线和曲线有三个公共点,求以这三个点为顶点的三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】杨辉三角,是二项式系数在三角形中的一种几何排列.在欧洲,这个表叫做帕斯卡三角形,帕斯卡(1623-1662)是在1654年发现这一规律的.我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,这是我国数学史上的一个伟大成就.如图所示,在杨辉三角中,去除所有为1的项,依次构成数列,则此数列前135项的和为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在直角坐标系中,曲线C由以原点为圆心,半径为2的半圆和中心在原点,焦点在x轴上的半椭圆构成,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.

(1)写出曲线C的极坐标方程;

(2)已知射线与曲线C交于点M,点N为曲线C上的动点,求面积的最大值.

查看答案和解析>>

同步练习册答案