精英家教网 > 高中数学 > 题目详情
已知数列{an}和{bn},an=n,bn=2n,定义无穷数列{cn}如下:a1,b1,a2,b2,a3,b3,…,an,bn,…
(1)写出这个数列{cn}的一个通项公式(不能用分段函数)
(2)指出32是数列{cn}中的第几项,并求数列{cn}中数值等于32的两项之间(不包括这两项)的所有项的和
(3)如果cx=cy(x,y∈N*,且x<y),求函数y=f(x)的解析式,并计算cx+1+cx+3+…+cy(用x表示)
分析:(1)写出满足题意的一个通项公式即可;
(2)利用等差数列与等比数列的通项公式可确定32是数列{cn}中的第10项与第63项,采用分组求和的方法可以解决;
(3)经过推敲可以求得y=f(x)的解析式,从而计算cx+1+cx+3+…+cy
解答:解:(1)a1,b1,a2,b2,a3,b3,…,an,bn,…
    即n,2n,n,2n,n,2n,n,2n,…
    不妨:cn= [1+(-1)n+1] •
(n+1)
4
+[1+(-1)n] •2
n
2
- 1

    (2)32=a32=b5,b5=c10,a32=c63
    数列{cn}中数值等于32的两项之间(不包括这两项)的所有项的和为:
    a6+a7+…+a31+b6+b7+…+b31=
26(6+31)
2
-(26-232)=481-64+232=4294967713.
(3)∵cx=cy(x,y属于正整数,且x<y),
y=2(
x
2
+1)
-1

cx+1+cx+3+…+cy=
[2
x
2
-
x
2
][
x
2
+1+2
x
2
]   
2
-2(
x
2
+1)
+2[2
x
2
]
点评:本题考查数列的求和,难点在于对数列公式的推敲及其求和的思维,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}和{bn}满足:a=1,a1=2,a2>0,bn=
a1an+1
(n∈N*)
.且{bn}是以
a为公比的等比数列.
(Ⅰ)证明:aa+2=a1a2
(Ⅱ)若a3n-1+2a2,证明数例{cx}是等比数例;
(Ⅲ)求和:
1
a1
+
1
a2
+
1
a3
+
1
a4
+
+
1
a2n-1
+
1
a2n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}和{bn}满足a1=m,an+1an+n,bn=an-
2n
3
+
4
9

(1)当m=1时,求证:对于任意的实数λ,{an}一定不是等差数列;
(2)当λ=-
1
2
时,试判断{bn}是否为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}和等比数列{bn}满足:a1=b1=4,a2=b2=2,a3=1,且数列{an+1-an}是等差数列,n∈N*
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)问是否存在k∈N*,使得ak-bk∈(
12
,3]
?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}和{bn}满足:a1=λ,an+1=
23
an+n-4,bn=(-1)n(an-3n+21)其中λ为实数,且λ≠-18,n为正整数.
(Ⅰ)求证:{bn}是等比数列;
(Ⅱ)设0<a<b,Sn为数列{bn}的前n项和.是否存在实数λ,使得对任意正整数n,都有a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•孝感模拟)已知数列{an}和{bn}满足a1=1且bn=1-2anbn+1=
bn
1-4 
a
2
n

(I)证明:数列{
1
an
}是等差数列,并求数列{an}的通项公式;
(Ⅱ)求使不等式(1+a1)(1+a2)…(1+an)≥k
1
b2b3bnbn+1 
对任意正整数n都成立的最大实数k.

查看答案和解析>>

同步练习册答案