精英家教网 > 高中数学 > 题目详情
18.已知方程(m2-2m-3)x+(2m2+m-1)y+5-2m=0(m∈R).
(1)求方程表示一条直线的条件;
(2)当m为何值时,方程表示的直线与x轴垂直;
(3)若方程表示的直线在两坐标轴上的截距相等,求实数m的值.

分析 (1)由$\left\{\begin{array}{l}{m^2}-2m-3=0\\ 2{m^2}+m-1=0\end{array}\right.$,得:m=-1,方程(m2-2m-3)x+(2m2+m-1)y+5-2m=0(m∈R)表示直线,可得m2-2m-3、2m2+m-1不同时为0,即可得出.
(2)方程表示的直线与x轴垂直,可得$\left\{\begin{array}{l}{m^2}-2m-3≠0\\ 2{m^2}+m-1=0\end{array}\right.$,
(3)当5-2m=0,即$m=\frac{5}{2}$时,直线过原点,在两坐标轴上的截距均为0.当$m≠\frac{5}{2}$时,由$\frac{2m-5}{{{m^2}-2m-3}}=\frac{2m-5}{{2{m^2}+m-1}}$,解得:m.

解答 解:(1)由$\left\{\begin{array}{l}{m^2}-2m-3=0\\ 2{m^2}+m-1=0\end{array}\right.$,得:m=-1(12分)
∵方程(m2-2m-3)x+(2m2+m-1)y+5-2m=0(m∈R)表示直线
∴m2-2m-3、2m2+m-1不同时为0,∴m≠-1.(4分)
(2)方程表示的直线与x轴垂直,∴$\left\{\begin{array}{l}{m^2}-2m-3≠0\\ 2{m^2}+m-1=0\end{array}\right.$,∴$m=\frac{1}{2}$.(6分)
(3)当5-2m=0,即$m=\frac{5}{2}$时,直线过原点,在两坐标轴上的截距均为0(8分)
当$m≠\frac{5}{2}$时,由$\frac{2m-5}{{{m^2}-2m-3}}=\frac{2m-5}{{2{m^2}+m-1}}$得:m=-2.(10分)

点评 本题考查了直线方程、相互垂直的直线斜率之间的关系、截距,考查了推理能力与计算能力,属于中档 题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.将函数f(x)=$\sqrt{x}$中的自变量x用x=g(t)替换,替换后所得的函数F(t)=$\sqrt{g(t)}$与原函数f(x)的值域相同,则函数g(t)可以是下列函数中的①③④(请填写所有满足条件的g(t)的编号).
①g(t)=t${\;}^{\frac{1}{2}}$;②g(t)=2t;③g(t)=3t-5;④g(t)=($\frac{1}{2}$)t-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,某观光休闲庄园内有一块扇形花卉园OAB,其中O为扇形所在圆的圆心,扇形半径为500米,cos∠AOB=$\frac{1}{4}$.庄园经营者欲在花卉园内修建一条赏花长廊,分别在边OA、弧$\widehat{AB}$、边OB上选点D,C,E修建赏花长廊CD,CE,且CD∥OB,CE∥OA,设CD长为x米,CE长为y米.
(Ⅰ)试求x,y满足的关系式;
(Ⅱ)问x,y分别为何值时,才能使得修建赏花长廊CD与CE的总长最大,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某工厂组织工人技能培训,其中甲、乙两名技工在培训时进行的5次技能测试中的成绩如图茎叶图所示.
(1)现要从中选派一人参加技能大赛,从这两名技工的测试成绩分析,派谁参加更合适;
(2)若将频率视为概率,对选派参加技能大赛的技工在今后三次技能大赛的成绩进行预测,记这三次成绩中高于85分的次数为ξ,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知点A(-2,3)、B(3,2),若直线l:y=kx-2与线段AB没有交点,则l的斜率k的取值范围是$(-\frac{5}{2},\frac{4}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.a为实数,记函数f(x)=2|cosx|+a($\sqrt{1+sinx}$+$\sqrt{1-sinx}$)的最大值为g(a)
(1)设t=$\sqrt{1+sinx}$+$\sqrt{1-sinx}$,求t的取值范围并把f(x)表示为t的表达式;
(2)求函数f(x)的最大值g(a).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.三棱柱ABC-A1B1C1中,△ABC为等边三角形,AA1⊥平面ABC,AA1=AB,M,N分别是A1B1,A1C1的中点,则BM与AN所成角的余弦值为(  )
A.$\frac{1}{10}$B.$\frac{3}{5}$C.$\frac{7}{10}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若将函数y=cos(2x+$\frac{π}{4}$)的图象向左平移$\frac{π}{6}$个单位长度,则平移后图象的一个对称中心是(  )
A.($\frac{π}{24}$,0)B.($\frac{5π}{24}$,0)C.($\frac{11π}{24}$,0)D.($\frac{11π}{12}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,已知b=1,c=$\sqrt{3}$,∠C=120°,则a=1.

查看答案和解析>>

同步练习册答案