【题目】如图,在三棱柱中,侧面是菱形,为的中点,为等腰直角三角形,,且.
(1)求证:平面;
(2)求与平面所成角的正弦值.
【答案】(1)证明见解析(2)
【解析】
(1)推导出,连结,设,则,推导出,由此能证明.
(2)方法一:设与平面所成角为,点到平面的距离为,,由,求出,由此能求出与平面所成角的正弦值.
方法二:用向量法求解线面成角的正弦值, 由(1)可知面面,因为,
所以面.建立坐标系,令与平面所成角为,
可求出面的法向量为,即可求出,即与平面所成角的正弦值.
(1)证明:因为为的中点,,所以.
连接,如图(1)所示.
设,因为四边形是菱形,为的中点,,
∴.
又为等腰直角三角形,,,所以,
则.
又因为,
所以平面.
(2)法一:如图(1),令与平面所成角为,点到平面的距离为,,由(1)可知,平面.
则,
所以.
又因为,
所以易求得,
所以,
由此可得,
所以,
则,
即与平面所成角的正弦值为.
法二:由(1)可知面面,因为,
所以面.
按图(2)方式建立坐标系,令与平面所成角为,
则,,
则,
令面的法向量为,
则,
即,
即,
令,则,,
即,
即与平面所成角的正弦值为.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,射线的方程为,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的方程为.一只小虫从点沿射线向上以单位/min的速度爬行
(1)以小虫爬行时间为参数,写出射线的参数方程;
(2)求小虫在曲线内部逗留的时间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了了解篮球运动是否与性别相关,在高一新生中随机调查了40名男生和40名女生,调查的结果如下表:
喜欢 | 不喜欢 | 总计 | |
女生 | 8 | ||
男生 | 20 | ||
总计 |
(1)根据题意完成上面的列联表,并用独立性检验的方法分析,能否在犯错的概率不超过0.01的前提下认为喜欢篮球运动与性别有关?
(2)从女生中按喜欢篮球运动与否,用分层抽样的方法抽取5人做进一步调查,从这5人中任选2人,求2人都喜欢篮球运动的概率.
附:
0.10 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中,,,,,.
(1)求证:平面平面;
(2)在线段上是否存在点,使得平面与平面所成锐二面角为?若存在,求的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了拓展城市的旅游业,实现不同市区间的物资交流,政府决定在市与市之间建一条直达公路,中间设有至少8个的偶数个十字路口,记为,现规划在每个路口处种植一颗杨树或者木棉树,且种植每种树木的概率均为.
(1)现征求两市居民的种植意见,看看哪一种植物更受欢迎,得到的数据如下所示:
A市居民 | B市居民 | |
喜欢杨树 | 300 | 200 |
喜欢木棉树 | 250 | 250 |
是否有的把握认为喜欢树木的种类与居民所在的城市具有相关性;
(2)若从所有的路口中随机抽取4个路口,恰有个路口种植杨树,求的分布列以及数学期望;
(3)在所有的路口种植完成后,选取3个种植同一种树的路口,记总的选取方法数为,求证:.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一项针对某一线城市30~50岁都市中年人的消费水平进行调查,现抽查500名(200名女性,300名男性)此城市中年人,最近一年内购买六类高价商品(电子产品、服装、手表、运动与户外用品、珠宝首饰、箱包)的金额(万元)的频数分布表如下:
(1)将频率视为概率,估计该城市中年人购买六类高价商品的金额不低于5000元的概率.
(2)把购买六类高价商品的金额不低于5000元的中年人称为“高收入人群”,根据已知条件完成22列联表,并据此判断能否有95%的把握认为“高收入人群”与性别有关?
参考公式:,其中
参考附表:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com