精英家教网 > 高中数学 > 题目详情

如图,等边三角形OAB的边长为8,且其三个顶点均在抛物线E:x2=2py(p>0)上.

(1)求抛物线E的方程;
(2)设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q.证明:以PQ为直径的圆恒过y轴上某定点.

(1)x2=4y.(2)见解析

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知命题,命题:方程表示焦点在轴上的双曲线.
(1)命题为真命题,求实数的取值范围;
(2)若命题“”为真,命题“”为假,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆E:+y2=1(a>1)的上顶点为M(0,1),两条过M的动弦MA、MB满足MA⊥MB.
(1)当坐标原点到椭圆E的准线距离最短时,求椭圆E的方程;
(2)若Rt△MAB面积的最大值为,求a;
(3)对于给定的实数a(a>1),动直线AB是否经过一定点?如果经过,求出定点坐标(用a表示);反之,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,圆C:(x+1)2+y2=16,点F(1,0),E是圆C上的一个动点,EF的垂直平分线PQ与CE交于点B,与EF交于点D.

(1)求点B的轨迹方程;
(2)当点D位于y轴的正半轴上时,求直线PQ的方程;
(3)若G是圆C上的另一个动点,且满足FG⊥FE,记线段EG的中点为M,试判断线段OM的长度是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆经过点,且两焦点与短轴的两个端点的连线构成一正方形.
(1)求椭圆的方程;
(2)直线与椭圆交于两点,若线段的垂直平分线经过点,求
为原点)面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左、右焦点分别为, 焦距为2,过作垂直于椭圆长轴的弦长为3
(1)求椭圆的方程;
(2)若过点的动直线交椭圆于A、B两点,判断是否存在直线使得为钝角,若存在,求出直线的斜率的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆
(1)求椭圆C的标准方程。
(2)过点Q(0,)的直线与椭圆交于A、B两点,与直线y=2交于点M(直线AB不经过P点),记PA、PB、PM的斜率分别为k1、k2、k3,问:是否存在常数,使得若存在,求出名的值:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆=1(a>b>0)的离心率为,且过点A(0,1).
 
(1)求椭圆的方程;
(2)过点A作两条互相垂直的直线分别交椭圆于点M、N,求证:直线MN恒过定点P.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知点D(0,-2),过点D作抛物线的切线l,切点A在第二象限。

(1)求切点A的纵坐标;
(2)若离心率为的椭圆恰好经过A点,设切线l交椭圆的另一点为B,若设切线l,直线OA,OB的斜率为k,,①试用斜率k表示②当取得最大值时求此时椭圆的方程。

查看答案和解析>>

同步练习册答案