【题目】3月12日,全国政协总工会界别小组会议上,人社部副部长汤涛在回应委员呼声时表示无论是从养老金方面,还是从人力资源的合理配置来说,延迟退休是大势所趋.不过,汤部长也表示,不少职工对于延迟退休有着不同的意见.某高校一社团就是否同意延迟退休的情况随机采访了200名市民,并进行了统计,得到如下的列联表:
赞同延迟退休 | 不赞同延迟退休 | 合计 | |
男性 | 80 | 20 | 100 |
女性 | 60 | 40 | 100 |
合计 | 140 | 60 | 200 |
(1)根据上面的列联表判断能否有的把握认为对延迟退休的态度与性别有关;
(2)为了进一步征求对延迟退休的意见和建议,从抽取的200位市民中对不赞同的按照分层抽样的方法抽取6人,再从这6人中随机抽出3名进行电话回访,求3人中至少有1人为男性的概率.
附: ,其中.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)见解析;(2)
【解析】试题分析:
(1)根据列联表中的数据求得后,再结合临界值表中的数据进行判断即可.(2)由题意可得在抽取的不赞同延迟退休的6人中,男性2人,女性4人,然后根据古典概型概率求解可得结论.
试题解析:
(1)由列联表中的数据可得.
所以有99.5%的把握认为对延迟退休的态度与性别有关.
(2)设从不赞同延迟退休的男性中抽取人,从不赞同延迟退休的女性中抽取人,
由分层抽样的定义可知,解得,
在抽取的不赞同延迟退休的6人中,男性2人记为, ,女性4人记为, , , ,则所有的基本事件如下:
, , , ,
, , ,
, , ,
, , ,
, , ,
, , , 共20种,
其中至少有1人为男性的情况有16种.
记事件为“至少有1人为男性不赞同延迟退休”,
则.
即至少有1人为男性不赞同延迟退休的概率为.
科目:高中数学 来源: 题型:
【题目】某特色餐馆开通了美团外卖服务,在一周内的某特色菜外卖份数(份)与收入(元)之间有如下的对应数据:
外卖份数(份) | 2 | 4 | 5 | 6 | 8 |
收入(元) | 30 | 40 | 60 | 50 | 70 |
(1)画出散点图;
(2)求回归直线方程;
(3)据此估计外卖份数为12份时,收入为多少元.
注:①参考公式:线性回归方程系数公式, ;
②参考数据: , , .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}满足a1=1,且an+1-an=n+1(n∈N*),则数列{an}的通项公式为________; 前10项的和为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列结论正确的是( )
A.在中,若,则
B.在锐角三角形中,不等式恒成立
C.在中,若,,则为等腰直角三角形
D.在中,若,,三角形面积,则三角形外接圆半径为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:+=1(a>b>0)经过点(1,),且焦距为2.
(1)求椭圆C方程;
(2)椭圆C的左,右焦点分别为F1,F2,过点F2的直线l与椭圆C交于A,B两点,求△F2AB面积S的最大值并求出相应直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平面ABCD⊥平面ADEF,其中四边形ABCD为矩形,四边形ADEF为梯形,AF∥DE,AF⊥EF,AF=AD=2AB=2DE=2.
(1)求证:CE∥面ABF;
(2)求直线DE与平面BDF所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标坐标系中,曲线的参数方程为(为参数),曲线: .以为极点, 轴的非负半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系.
(1)求曲线的极坐标方程;
(2)射线()与曲线的异于极点的交点为,与曲线的交点为,求.
【答案】(1) 的极坐标方程为, 的极坐标方程为;(2) .
【解析】试题分析:(1)先根据三角函数平方关系消参数得曲线,再根据将曲线的极坐标方程;(2)将代人曲线的极坐标方程,再根据求.
试题解析:(1)曲线的参数方程(为参数)
可化为普通方程,
由,可得曲线的极坐标方程为,
曲线的极坐标方程为.
(2)射线()与曲线的交点的极径为,
射线()与曲线的交点的极径满足,解得,
所以.
【题型】解答题
【结束】
23
【题目】设函数.
(1)设的解集为,求集合;
(2)已知为(1)中集合中的最大整数,且(其中,,为正实数),求证:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com