精英家教网 > 高中数学 > 题目详情
如图,是圆的直径,垂直于圆所在的平面,是圆上的点.

(1)求证:平面平面
(2)若,求二面角的余弦值.
(1)详见试题解析;(2)

试题分析:(1)只要证;(2)可以利用三垂线定理作出二面角的平面角,在三角形中计算也可以利用法向量求解:以为原点,所在的直线分别为轴,直线所在方向为轴.先分别求出面和面的法向量,再利用法向量的夹角公式解决问题.
试题解析:(1),又
(2)法一:过,连结.显然,由三垂线定理可得即为所求角. 
法二:以为原点,所在的直线分别为轴,直线所在方向为轴。
 于是
的一个法向量为,面的一个法向量为
  由题知,所求二面角的余弦值为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在几何体中,点在平面ABC内的正投影分别为A,B,C,且,E为中点,

(1)求证;CE∥平面
(2)求证:平面平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三棱柱的侧棱长和底面边长均为2,在底面ABC内的射影O为底面△ABC的中心,如图所示:

(1)联结,求异面直线所成角的大小;
(2)联结,求三棱锥C1-BCA1的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,四边形为矩形,为等腰三角形,,平面 平面,且分别为的中点.

(Ⅰ)证明:平面
(Ⅱ)证明:平面平面
(Ⅲ)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,边长为2的正方形中,点的中点,点的中点,将△、△ 分别沿折起,使两点重合于点,连接.

(1)求证:;     (2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在棱长为2的正方体ABCDA1B1C1D1中,E为BC的中点,点P在线段D1E上,点P到直线CC1的距离的最小值为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是不同的直线,是不同的平面,则下列命题:
①若,则;②若,则
③若,则;④若,则.
其中正确命题的个数是           (   )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

棱长为1的正方体ABCD A1B1C1D1中,点M,N分别在线段AB1,BC1上,且AM=BN,给出以下结论:
①AA1⊥MN
②异面直线AB1,BC1所成的角为60°
③四面体B1 D1CA的体积为
④A1C⊥AB1,A1C⊥BC1, 其中正确的结论的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于不重合的直线和不重合的平面,下列命题错误的是(   )
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

同步练习册答案