精英家教网 > 高中数学 > 题目详情
(2010•广东模拟)如图,PO⊥ABCD,点O在AB上,EA∥PO,四边形ABCD为直角梯形,BC⊥AB,BC=CD=BO=PO,EA=AO=
12
CD
(1)求证:BC⊥平面ABPE;
(2)直线PE上是否存在点M,使DM∥平面PBC,若存在,求出点M;若不存在,说明理由.
分析:(1)连接DO,通过BC⊥AB,PO⊥BC,PO∩AB=0,证明BC⊥平面ABPE;
(2)假设在线段PE上存在一点M,由题意及图形建立空间直角坐标系,写出个点的坐标,使DM∥平面PBC,利用向量的知识建立未知量的方程进,进而求解.
解答:(1)证明:连接DO,BO∥CD且BO=CD,又BC⊥AB,则四边形BODC是矩形,
因为PO⊥平面ABCD,BC?平面ABCD,∴PO⊥BC,∵PO∩AB=0,
∴BC⊥平面ABPE.
(2)解:存在满足条件的点M.由(1)可知,
OD、OB、OP两两垂直,分别以OD、OB、OP为x、y、z轴建立空间直角坐标系.
设AO=1,则B(0,2,0),C(2,2,0),D(2,0,0),E(0,-1,1),P(0,0,2),
PE
=(0,-1,-1)
PB
=(0,2,-2)
BC
=(2,0,0)

PE
BC
=0
,向量
PE
是平面PBC的一个法向量,
若在线段PE上存在一点M,使DM∥平面PBC,
PM
PE
,则
DM
=
DP
+
PM
=(-2,0,2)+λ(0,-1,-1)=(-2,-λ,2-λ)

DM
PE
=0

得λ-(2-λ)=0,
∴λ=1,即M点与线段PE的端点E重合.
点评:此题重点考查了建立恰当的空间直角坐标系,利用向量的知识证明可线面垂直,考查空间向量的知识及方程的思想求解问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•广东模拟)函数f(x)=cos(-
x
2
)+sin(π-
x
2
).x∈R
(1)求f(x)的周期;
(2)求f(x)在[0,π)上的减区间;
(3)若f(a)=
2
10
5
,a∈(0,
π
2
),求tan(2a+
π
4
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•广东模拟)设x、y、z是空间不同的直线或平面,对下列四种情形:
①x、y、z均为直线;②x、y是直线,z是平面;③z是直线,x、y是平面;④x、y、z均为平面.其中使“x⊥z且y⊥z⇒x∥y”为真命题的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•广东模拟)函数y=e2x图象上的点到直线2x-4y-4=0距离的最小值是
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•广东模拟)如果(3x2-
2x3
)n
的展开式中含有非零常数项,则正整数n的最小值为
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•广东模拟)不等式1<|x+2|<5的解集是(  )

查看答案和解析>>

同步练习册答案