已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与=(3,-1)共线.
(1)求椭圆的离心率;
(2)设M为椭圆上任意一点,且(),证明为定值.
(1);(2)
解析试题分析:(1)设椭圆方程为,直线AB:y=x-c,
联立消去y可得:,
令A(),B (),
则,,
向量=(,), 与向量=(3,-1)共线,
所以3()+()=0,
即3(-2c)+()=0,
4()-6c=0,
化简得:,
所以离心率为=。
(2)椭圆即: ①
设向量=(x,y),=(),=()
(x,y)=λ()+μ()
即:x=,y=
M在椭圆上,把坐标代入椭圆方程① 得 ②
直线AB的方程与椭圆方程联立得,由(1)
已证,所以
所以=,=,
而A,B在椭圆上 ,
全部代入②整理可得 为定值。
考点:本题主要考查向量共线的条件,直线与椭圆的位置关系。
点评:典型题,涉及直线与椭圆的位置关系问题,通过联立方程组得到一元二次方程,应用韦达定理可实现整体代换,简化解题过程。
科目:高中数学 来源: 题型:解答题
(14分)如图,已知抛物线C1: y=x2, 与圆C2: x2+(y+1)2="1," 过y轴上一点A(0, a)(a>0)作圆C2的切线AD,切点为D(x0, y0).
(1)证明:(a+1)(y0+1)=1
(2)若切线AD交抛物线C1于E,且E为AD的中点,求点A纵坐标a.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线C关于轴对称,它的顶点在坐标原点,并且经过点
(1)求抛物线C的标准方程
(2)直线过抛物线的焦点F,与抛物线交于A、B两点,线段AB的中点M的横坐标为3,求弦长以及直线的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
已知抛物线、椭圆和双曲线都经过点,它们在轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.
(1)求这三条曲线的方程;
(2)对于抛物线上任意一点,点都满足,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线的中心在原点,对称轴为坐标轴,一条渐近线方程为,右焦点,双曲线的实轴为,为双曲线上一点(不同于),直线,分别与直线交于两点
(1)求双曲线的方程;
(2)是否为定值,若为定值,求出该值;若不为定值,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分16分) 本题共有3个小题,第1小题满分4分,第2小题满分6分. 第3小题满分6分.
(理)已知椭圆的一个焦点为,点在椭圆上,点满足(其中为坐标原点),过点作一直线交椭圆于、两点 .
(1)求椭圆的方程;
(2)求面积的最大值;
(3)设点为点关于轴的对称点,判断与的位置关系,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)已知点分别为椭圆的左、右焦点,点为椭圆上任意一点,到焦点的距离的最大值为.
(1)求椭圆的方程。
(2)点的坐标为,过点且斜率为的直线与椭圆相交于两点。对于任意的是否为定值?若是求出这个定值;若不是说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)如图,直线l:y=x+b与抛物线C:x2=4y相切于点A.
(1)求实数b的值;
(2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com