精英家教网 > 高中数学 > 题目详情
(2012•西城区二模)已知函数f(x)=cos2(x-
π
6
)-sin2x

(Ⅰ)求f(
π
12
)
的值;
(Ⅱ)若对于任意的x∈[0,
π
2
]
,都有f(x)≤c,求实数c的取值范围.
分析:(Ⅰ)由条件利用二倍角的余弦公式求出f(
π
12
)
的值.
(Ⅱ)利用三角恒等变换化简f(x)的解析式为
3
2
sin(2x+
π
3
)
,由x的范围求出角2x+
π
3
的范围,可得f(x)的最大值,可得实数c的取值范围.
解答:解:(Ⅰ)∵函数f(x)=cos2(x-
π
6
)-sin2x
,∴f(
π
12
)=cos2(-
π
12
)-sin2
π
12
=cos
π
6
=
3
2
.  …(5分)
(Ⅱ)∵f(x)=
1
2
[1+cos(2x-
π
3
)]-
1
2
(1-cos2x)
…(7分)
=
1
2
[cos(2x-
π
3
)+cos2x]=
1
2
(
3
2
sin2x+
3
2
cos2x)
 …(8分)
=
3
2
sin(2x+
π
3
)
.      …(9分)
因为 x∈[0,
π
2
]
,所以 2x+
π
3
∈[
π
3
3
]
,…(10分)
所以当 2x+
π
3
=
π
2
,即 x=
π
12
时,f(x)取得最大值
3
2
.   …(11分)
所以 ?x∈[0,
π
2
]
,f(x)≤c等价于 
3
2
≤c

故当 ?x∈[0,
π
2
]
,f(x)≤c时,c的取值范围是[
3
2
,+∞)
.  …(13分)
点评:本题主要考查三角函数的恒等变换及化简求值,正弦函数的定义域、值域,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•西城区二模)如图,直角梯形ABCD与等腰直角三角形ABE所在的平面互相垂直.AB∥CD,AB⊥BC,AB=2CD=2BC,EA⊥EB.
(Ⅰ)求证:AB⊥DE;
(Ⅱ)求直线EC与平面ABE所成角的正弦值;
(Ⅲ)线段EA上是否存在点F,使EC∥平面FBD?若存在,求出
EFEA
;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•西城区二模)对数列{an},如果?k∈N*及λ1,λ2,…,λk∈R,使an+k1an+k-12an+k-2+…+λkan成立,其中n∈N*,则称{an}为k阶递归数列.给出下列三个结论:
①若{an}是等比数列,则{an}为1阶递归数列;
②若{an}是等差数列,则{an}为2阶递归数列;
③若数列{an}的通项公式为an=n2,则{an}为3阶递归数列.
其中,正确结论的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•西城区二模)甲、乙两人参加某种选拔测试.在备选的10道题中,甲答对其中每道题的概率都是
35
,乙能答对其中的5道题.规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,至少得15分才能入选.
(Ⅰ)求乙得分的分布列和数学期望;
(Ⅱ)求甲、乙两人中至少有一人入选的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•西城区二模)执行如图所示的程序框图,若输入如下四个函数:
①y=2x
②y=-2x
③f(x)=x+x-1
④f(x)=x-x-1
则输出函数的序号为(  )

查看答案和解析>>

同步练习册答案