精英家教网 > 高中数学 > 题目详情
过点C(1,2)作直线,使其在坐标轴上的截距相等,则满足条件的直线的斜率为(  )
A、-1B、±1C、-1或2D、±1或2
分析:当直线过原点时,斜率为
2-0
1-0
=2,当直线不过原点时,设直线的方程为 x+y=a,斜率等于-1.
解答:解:当直线过原点时,斜率为
2-0
1-0
=2,当直线不过原点时,则直线的方程为 x+y=a 的形式,
此时,直线的斜率为-1,
故选C.
点评:本题考查用待定系数法求直线方程,直线的斜率公式,体现了分类讨论的数学思想,注意考虑直线过原点的情况,这是解题的易错点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图梯形ABCD,AD∥BC,∠A=90°,过点C作CE∥AB,AD=2BC,AB=BC,,现将梯形沿CE折成直二面角D-EC-AB.
(1)求直线BD与平面ABCE所成角的正切值;
(2)设线段AB的中点为P,在直线DE上是否存在一点M,使得PM∥面BCD?若存在,请指出点M的位置,并证明你的结论;若不存在,请说明理由;

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淮南二模)已知椭圆C:
x2
a2
+
y2
b2
=1,(a>b>0)与双曲4x2-
4
3
y2=1有相同的焦点,且椭C的离心e=
1
2
,又A,B为椭圆的左右顶点,M为椭圆上任一点(异于A,B).
(1)求椭圆的方程;
(2)若直MA交直x=4于点P,过P作直线MB的垂线x轴于点Q,Q的坐标;
(3)求点P在直线MB上射R的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在直三棱柱ABC-A′B′C′中,点D是BC的中点,∠ACB=90°,AC=BC=1,AA′=2,
(1)欲过点A′作一截面与平面AC'D平行,问应当怎样画线,写出作法,并说明理由;
(2)求异面直线BA′与 C′D所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:2014届四川省高二10月月考理科数学试卷(解析版) 题型:解答题

如图梯形ABCD,AD∥BC,∠A=900,过点C作CE∥AB,AD=2BC,AB=BC,,现将梯形沿CE

折成直二面角D-EC-AB.

(1)求直线BD与平面ABCE所成角的正切值;

(2)设线段AB的中点为,在直线DE上是否存在一点,使得∥面BCD?若存在,请指出点的位置,并证明你的结论;若不存在,请说明理由;

   

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省成都七中高二(上)10月段考数学试卷(理科)(解析版) 题型:解答题

如图梯形ABCD,AD∥BC,∠A=90°,过点C作CE∥AB,AD=2BC,AB=BC,,现将梯形沿CE折成直二面角D-EC-AB.
(1)求直线BD与平面ABCE所成角的正切值;
(2)设线段AB的中点为P,在直线DE上是否存在一点M,使得PM∥面BCD?若存在,请指出点M的位置,并证明你的结论;若不存在,请说明理由;

查看答案和解析>>

同步练习册答案