【题目】已知,两点,满足:,,,则的最大值为________.
【答案】
【解析】
设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由圆的方程和向量数量积的定义、坐标表示,可得三角形OAB为等边三角形,AB=1,的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,由两平行线的距离可得所求最大值.
解:设A(x1,y1),B(x2,y2),
=(x1,y1),=(x2,y2),
由x12+y12=1,x22+y22=1,x1x2+y1y2=,
可得A,B两点在圆x2+y2=1上,
且=1×1×cos∠AOB=,
即有∠AOB=60°,
即三角形OAB为等边三角形,AB=1,
的几何意义为点A,B两点
到直线x+y﹣1=0的距离d1与d2之和,
显然A,B在第三象限,AB所在直线与直线x+y=1平行,
可设AB:x+y+t=0,(t>0),
由圆心O到直线AB的距离d=,
可得2=1,解得t=,
即有两平行线的距离为=,
即的最大值为,
故答案为:.
科目:高中数学 来源: 题型:
【题目】如图,在平面四边形ABCD中,已知A=,B=,AB=6.在AB边上取点E,使得BE=1,连接EC,ED.若∠CED=,EC=.
(1)求sin∠BCE的值;
(2)求CD的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 ,x R其中a>0.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数f(x)在区间(-3,0)内恰有两个零点,求a的取值范围;
(Ⅲ)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t),记 ,求函数g(t)在区间[-4,-1]上的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2016高考新课标II,理15)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:
(1)根据箱产量的频率分布直方图填写下面列联表,从等高条形图中判断箱产量是否与新、旧网箱养殖方法有关;
(2)根据列联表判断是否有99%的把握认为箱产量与养殖方法有关?
箱产量<50kg | 箱产量≥50kg | |
旧养殖法 | ||
新养殖法 |
参考公式:
(1)给定临界值表
P(K) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(2)其中为样本容量.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,且过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)过椭圆的左焦点的直线与椭圆交于两点,直线过坐标原点且与直线的斜率互为相反数.若直线与椭圆交于两点且均不与点重合,设直线与轴所成的锐角为,直线与轴所成的锐角为,判断与的大小关系并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,函数其中
(1)讨论函数的单调性;
(2)若函数有两个零点,
(i)求的取值范围;
(ii)设的两个零点分别为x1,x2,证明:x1x2>e2.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com