精英家教网 > 高中数学 > 题目详情
4.如图,正方体ABCD-A1B1C1D1中,E,F分别为棱A1B1,BB1的中点,则D1E与CF的延长线交于一点,此点在直线(  )
A.AD上B.B1C1C.A1D1D.BC上

分析 设交点为P,则P∈D1E,而D1E?平面A1B1C1D1,故P∈平面A1B1C1D1,同理可推出P∈平面BCC1B1,故P在两平面的交线上.

解答 解:设D1E与CF的延长线交于点P,则P∈D1E,
∵D1E?平面A1B1C1D1
∴P∈平面A1B1C1D1
同理可得:P∈平面BCC1B1
即P是平面A1B1C1D1和平面BCC1B1的公共点,
∵平面A1B1C1D1∩平面BCC1B1=B1C1
∴P∈B1C1
故选:B.

点评 本题考查了平面的基本性质,找到点线面的置关系是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.设平面直角坐标系原点与极坐标极点重合,x轴正半轴与极轴重合,若已知曲线C的极坐标方程为ρ2=$\frac{12}{3co{s}^{2}θ+4si{n}^{2}θ}$,点F1、F2为其左、右焦点,直线l的参数方程为$\left\{\begin{array}{l}{x=1+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数,t∈R).
(1)求直线l的普通方程和曲线C的参数方程;
(2)求曲线C上的点到直线l的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线l:Ax+By+C=0(A≠0,B≠0),点M0(x0,y0).求证:
(1)经过点M0,且平行于直线l的直线方程是:A(x-x0)+B(y-y0)=0
(2)经过点M0,且垂直于直线l的直线方程:$\frac{{x-{x_0}}}{A}=\frac{{y-{y_0}}}{B}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数$f(x)=\frac{{\sqrt{2-x}}}{x-1}+{log_2}(x+1)$的定义域为(  )
A.(-1,+∞)B.[-1,1)∪(1,2]C.(-1,2]D.(-1,1)∪(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若指数函数y=f(x)的图象过点(1,2),则f(2)=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设m,n是自然数,条件甲:m3+n3是偶数;条件乙:m-n是偶数,则甲是乙的(  )
A.充分不必要条件B.必要不充分条件
C.充分且必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知全集U=R,A={x|2a≤x≤a+3},B={x|x<1或x>5};
(1)若a=-1,求A∩∁UB,A∪B;
(2)若A⊆∁UB,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知p:|x-a|<4,q:-x2+5x-6>0,且q是p的充分而不必要条件,则a的取值范围为[-1,6].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=cos(\frac{π}{2}-x)cosx+\sqrt{3}{sin^2}x$
(Ⅰ)求f(x)的最小正周期及单调递减区间;
(Ⅱ)求$x∈[\frac{π}{6},\frac{π}{2}]$时函数f(x)的最大值和最小值.

查看答案和解析>>

同步练习册答案